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EXAMPLES FOR THE NONLOCALLY CONVEX THREE

SPACE PROBLEM

M. RIBE

Abstract. A simple way to obtain certain examples of locally bounded

spaces E of the following kind is described: E is nonlocally convex but

contains a locally convex subspace K such that E/K is locally convex.

The purpose of this note is to give a quite simple construction which proves

the following:

Theorem 1 (Independently proved by Kalton [5]). 77iere is a separated

locally bounded space E with an uncomplemented one-dimensional subspace L

such that E/L is isomorphic to lx.

Theorem 2. Indeed, there is an uncountable class of such spaces E of which

no one can be mapped into another by a continuous linear mapping which does

not annihilate the uncomplemented line.

Theorem 3A. There is a locally bounded space E with a subspace K such that

K is isomorphic to l°° and E/K to /', and such that for any infinite-dimensional

subspace Ex c E\K, the subspace Ex + K fails to be locally convex.

Theorem 3B. Let A be a set of the cardinality of the continuum. There is a

locally bounded space E with a subspace K such that K is isomorphic to /°°(A)

and E/K to /', and such that for any infinite-dimensional subspace Ex c

E\K, the subspace Ex + K fails to be separated by its dual.

Kalton [5] also proves that in Theorem 1, /' cannot be replaced by lp for

any p ^ 1 (0 < p < oo). For some further recent related results, see Dierolf

[1], Kalton and Peck [6], and Roberts [9]; cf. also Ribe [7].

We are thus dealing with the so-called three space problem, which is of

current interest also in the pure Banach space setting; some results have been

given by Enflo, Lindenstrauss, and Pisier [2]. In the desire to grasp the nature

of this problem it is apparently well motivated to study cases where

transparent solutions are possible.
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The author is grateful to Professor N. J. Kalton and to the referee for their

very valuable remarks.

The construction.

Definition. A nonnegative functional || • || on a linear space is a quasi-

norm if for some real constant k > 1, all x and y in the space satisfy

(i)\\x+y\\<k(\\x\\ + \\y\\).
(ii) ||sx|| = |j| ||x|| for all scalarss.

(iii) ||x|| = 0 implies x = 0.

A quasi-norm defines a separated locally bounded topology on the space,

with 0-neighbourhood base {{x|||x|| < e}|e > 0}. The smallest possible k-

value is sometimes called the modulus of concavity of || • ||.

Lemma 1. Let F and G be quasi-normed spaces. Let <f>: G -> F be a mapping

which for all x,y in G fulfills the conditions:

(i) \\<Kx) + <¡>(y) - <t>(x+y)\\F < c(\\x\\G + \\y\\G) - \\x + y\\G for some

constant c > 1.

(ii) <b(sx) = s<j>(x)for all scalars s.

Then the linear space F X G can be made into a quasi-normed space E so

that for (x, y) in E we have:

l°-ll(*>0)||£ = ||x||f.

2°. \\(x,y)\\E > \\(<t>(y),y)\\E = \\y\\c.

So in particular E/ F and G are isomorphic.

(Remark. If k is the modulus of concavity, we can actually achieve

3°. kE < max(kF, c).)

Proof. We just have to put

||(x,v)||£=||x-<,(v)||f+||v||G.

A straightforward computation, using the assumptions for <f>, and the

properties of || • \\F and || • ||G as quasi-norms, shows that this is a quasi-norm.

It obviously has the properties 1° and 2°. (Further, it has property 3°.)

Note that the conditions on the mapping ¿> are a sort of "control of its

nonlinearity". For the construction of such a mapping we shall use a simple

inequality.

Lemma 2. For all real numbers s, t we have

\s log\s\ + t \og\t\ - (s + í)log|í + f|| < 2(|5| + |í|).

(Weput 01og0 = 0.)

Proof. Case I: t > s > 0. Then the left-hand side is equal to

s log((s + t)/s) + t log((s + t)/t)

< t ■ 2|($/2r) log(s/2/)| +1 log 2 < 2/ < 2(s + t).

Case II:  t < - s < 0. Reduced to Case I by the substitution s' = s,

t' = - s - t.
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Let || • ||, be the usual norm on /¿, and let /0' be the subspace of all finitely

nonzero sequences. Applying Lemma 2 we get:

Lemma 3. Define a functional tp: /„' —> R by

<p(x) = 2 x, log|x,| - I 2 *,) log 2 x,
i \   i / i

where x = (^)/>i- Then for x,y in l¿ we have:

1°. |<p(x) + <p(>-) - «p(x +y)\ < 4(11*11, + ||y|[,).
2°. m(ix) = stp(x) for all reals s.

Proof of Theorem 1. Consider the case with real scalars. By Lemma 3 we

can apply Lemma 1 with F = R, G = /„', and </> = <p (taking c = 5). Replac-

ing the space E so obtained with its completion we get the desired E.

Namely, for all integers n > 2 and k, 1 < k < «, define points j*"'^ in /0'

with the coordinates

An,k) _= 1 /log «   for / = k,

1

I log n )
= 0

« - 1

for all other i.

for other i, 1 < i < n,

Then we get

and

as« -> oo. Since

|y»,*)||i=2/iog„

<p(yin-k)) = 1 + o(l)

(l,0) = (l/n)2 (\,yin'k))
k

for each n, the statements Io and 2° of Lemma 1 imply that the point (1, 0)

lies in the convex hull of every O-neighbourhood in E. Hence (1,0) cannot be

separated from 0 by any continuous linear form, and hence the line

lin {(1, 0)) is uncomplemented in E.

(Remark. By replacing m with e<p in this proof, with e > 0 small, we can

make the modulus of concavity of E arbitrarily close to 1.)

Let us close the section with some remarks on dual-separation in noncon-

vex spaces. Hahn-Banach's theorem easily gives:

Proposition. 77ie space E and the one-dimensional subspace L in Theorem 1

have this property: The weak closure of any closed subspace Ex in E is equal to

Ex + L.

So in particular E is an F-space which is not locally convex but yet

contains no proper closed weakly dense (abbreviated PCWD) subspace.

(Roberts [9] obtained yet another such space.) It is perhaps somewhat
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surprising that there is such a simple and natural example of a space with this

property. For this is in striking contrast to the following sort of converse to

Hahn-Banach's theorem, very recently proved by Kalton [4] (improving

Corollary 5.3 of Kalton [3]): If a separable F-space with separating dual has

no PCWD subspace, then it is locally convex.

Further, consider an algebraic supplement K to L in E. Then AT is a

nonlocally convex metrizable space which has the HBEP; i.e., the Hahn-

Banach Extension Property, meaning that the dual separates points from

closed subspaces. (Namely, if AT, is any relatively closed subspace in K, its

closure in E either contains L or is equal to Kx; in both cases, Kx must be

relatively weakly closed in K, by the Proposition.) But by Corollary E of Ribe

[8], any P-sum (where 0 < p < oo) of infinitely many copies of K fails to

have the HBEP. So the HBEP is not generally preserved under completion,

and not generally preserved under formation of F-sums for any p.

Many very different isomorphy types. To prove Theorem 2, let us first state

an elementary observation. On a given quasi-normed space, define

functional rk(x), for all k > 1, as the infimum of those numbers r > 0 for

which x lies in the convex hull of some subset of cardinality k in the open

/•-neighbourhood of zero. Now, for any continuous linear mapping / between

two quasi-normed spaces satisfying ||/(x)|| < C||x|| (say), we have rk(f(x))

< Crk(x) for all k.

Proof of Theorem 2. Let Gx, G2,.. . be subspaces in /' with dim G, = i,

spanned by disjoint sets of basis vectors; let P¡ be the projection onto G,.

Now, for any given bounded number sequence ax,a2, . . ., let E(ax, a2, . . . )

denote that space E which is obtained as in the proof of Theorem 1, but with

<p replaced by 2, a¡yP¡. Then let Rk(ax, a2, . . . ) be the number rk(e), where e

is the point (1, 0) in E(ax, a2, . . . ).

We shall recursively define a nonnegative sequence ex, e2, . . . , with e, = 0

except for i = n(k) (k > 1), say. Put e, = 1. Now suppose that e, has been

found for / < n = n(k); we want to define n(k + 1) and £„(*+,). First, there

is a number 8 > 0 such that

Rj(axex, . ..,a„en, yn+x,yn+2, ...)

>(l-2-k)RJ(oxex,...,onen,0,0,...)

when j < k, for all choices of (a,} with a, = 0 or 1, and for all choices of v,

with |y,| < 8. Then we put en(k+X) = 8, where n(k + 1) = m > n is taken so

large that

Rm(axex, ...,amem, 0,0, ...)

<(l/k)Rm(oxex,...,cnen,0,0,...)

for all (a,} with a, = 0 or 1, and am = 1. For by the argument in the proof of

Theorem 1 we can find such an m.

In view of the remark before the proof we can now find uncountably many
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spaces E(axex, a2e2, . . .), with a, = 0 or 1, which fulfill our claim.

Strictly singular quotient mappings.

Proof of Theorem 3A. Let (5,} be an enumeration of the set of all finite

subsets in the set of the usual basis vectors in / ', and let P¡ be the projection

onto the space spanned by S¡. In analogy to the proof of Theorem 1, we

define E as the completion of the space E obtained when we apply Lemma 1

with F = /°°, G = /„', and <f> = (<pP¡)¡.

Let X be any infinite-dimensional subspace in /'. Then for any integer

n > 1 and any number e > 0 there are unit vectors *(I),.. ., x(n) in /', which

are supported by disjoint finite sets of basis vectors and which have

dist(x(0, X) < e. Choose an m such that each of the vectors Pm(x°*) has

length at least 1 /2 and is such that its coordinates do not have different signs.

We can then apply the argument in the proof of Theorem 1, with the role of

the basis vectors played by those vectors Pm(x^) which have nonnegative

coordinates, or those which have nonpositive coordinates. Since n and e are

arbitrary, this argument implies that the inverse image of X in E is not locally

convex.

Theorem 3B is proved in the same way, but with {5,} replaced by the set of

all subsets of the basis.

Specifically, the quotient mappings of Theorems 3A and 3B are strictly

singular, i.e., each of their restrictions to infinite-dimensional subspaces fails

to be an isomorphism.
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