ON K-PRIMITIVE RINGS

THOMAS P. KEZLAN

Abstract

Ortiz has defined a new radical for rings, called the K-radical, which in general lies strictly between the prime radical and the Jacobson radical. In this paper a simple internal characterization of K-primitive rings is given, and it is shown that among the K-primitive rings are prime Noetherian rings and prime rings which satisfy a polynomial identity. In addition an analogue of the density theorem is proved for K-primitive rings.

Throughout, R will denote an associative ring, not necessarily with unity element. If N is a submodule of a right R-module M, then ($N: M)=\{a \in$ $R \mid M a \subset N\}$. As in [1], let K_{R} denote the class of all right R-modules M such that
(1) $(0: M)$ is a prime ideal of R;
(2) if N is a submodule of M for which $(N: M)=(0: M)$, then $N=0$.

Ortiz has shown that the property $K_{R}=\varnothing$ is a radical property and that the K-radical is $\cap\left\{(0: M) \mid M \in K_{R}\right\}$. A right K-primitive ideal of R is an ideal P such that $P=(0: M)$ for some $M \in K_{R}$, and a right K-primitive ring is a ring in which 0 is a right K-primitive ideal. Thus R is right K-primitive if and only if R is a prime ring and K_{R} contains a faithful right R-module. Left K-primitive, etc., are defined analogously, and in this paper terms such as " K-primitive" will always mean "right K-primitive".

Proposition 1. A prime ring R is K-primitive if and only if R contains a right ideal I which is maximal with respect to the property $(I: R)=0$.

Proof. Suppose R is K-primitive and let M be a faithful right R-module in K_{R}. Choose $m \neq 0$ in M; let $I=\{x \in R \mid m x=0\}$; and suppose $a \in(I: R)$. If $N=\{n \in M \mid n R a=0\}$, then since $m \in N, N$ is a nonzero submodule of M, whence there exists $b \neq 0$ in $(N: M)$. Thus $M b \subset N$ and so $M b R a=0$, which yields $b R a=0$ and hence $a=0$ since R is prime. Therefore R is a right ideal of R satisfying $(I: R)=0$. Now let J be any right ideal of R properly containing I. Since $m J$ is a nonzero submodule of M, there is an $x \neq 0$ in $(m J: M)$. Let $r \in R$. Since $m R x \subset M x \subset m J$, there exists $y \in J$

Received by the editors August 23, 1977 and, in revised form, September 7, 1977 and April 10, 1978.

AMS (MOS) subject classifications (1970). Primary 16A12, 16A20, 16A48; Secondary 16A21, 16A38.

Key words and phrases. K-primitive ring, Noetherian ring, PI-ring, Ore domain, injective hull, quasi-injective hull, density theorem.
such that $m r x=m y$. Thus $r x-y \in I$ and so $r x=(r x-y)+y \in J$. Hence $R x \subset J$, and so I is maximal with respect to $(I: R)=0$.

Conversely, assume I is a right ideal of R which is maximal with respect to $(I: R)=0$, and let M be the right R-module R / I. Since $(0: M)=(I: R)$ $=0, M$ is faithful. If N is a nonzero submodule of M, then its inverse image J in R is a right ideal properly containing I, and by the maximality of I, $(J: R) \neq 0$. Since $(N: M)=(J: R)$, we have $M \in K_{R}$, and so R is K primitive.

Corollary 1. Every primitive ring is K-primitive.
Corollary 2. Every right Noetherian prime ring is K-primitive.
Theorem 1. If R is a right order in a simple Artinian ring Q with center F such that $Q=R F$, then R is K-primitive.

Proof. $Q \cong D_{n}$ for some division ring D. Let V be an n-dimensional right vector space over D; choose $v \neq 0$ in V; and let $I=\{x \in R \mid v x=0\}$. If $a \in(I: R)$, then

$$
V a=v Q a=v R F a=v R a F \subset v I F=0
$$

whence $a=0$. Thus I is a right ideal of R satisfying $(I: R)=0$. Let J be a right ideal of R properly containing I. Since $v J$ is a nonzero R-submodule of $V, \mathfrak{v} J F$ is a nonzero Q-submodule of V and hence $V=v J F$. Choose $x \in J F$ such that $v=v x$. There exist a and b in R with b regular such that $1-x=a b^{-1}$. Hence $v a b^{-1}=v(1-x)=0$, and so $v a=0$, which means that $a \in I$. Thus $b=a+x b \in I+J F \subset J F$. Since $J F$ is a right ideal of Q and contains an invertible element b of Q, we have $J F=Q$. We now write $1=\Sigma c_{i} \lambda_{i}$ where the c_{i} are in J and the λ_{i} are in F. We may also write $\lambda_{i}=d_{i} e^{-1}$ where the d_{i} are in R and e is a regular element of R. For any $r \in R$ we have

$$
r=1 \cdot r=\sum c_{i} \lambda_{i} r=\sum c_{i} r \lambda_{i}=\sum c_{i} r d_{i} e^{-1}
$$

whence $r e=\Sigma c_{i} r d_{i} \in J$. Thus $\operatorname{Re} \subset J$ and so $(J: R) \neq 0$. Therefore I is maximal with respect to $(I: R)=0$, so by Proposition $1, R$ is K-primitive.

Using Theorem 1 and Posner's Theorem [2], we establish
Corollary 3. Every prime ring satisfying a polynomial identity over its centroid is both left and right K-primitive.

A special case of Theorem 1 is worth noting. If Q is a division ring-that is, if R is a right Ore domain-then the proof of Theorem 1 shows that the right ideal I is 0 . We shall call a K-primitive ring strongly K-primitive in case the right ideal I which is maximal with respect to $(I: R)=0$ is $I=0$. Thus we have

Corollary 4. If R is a right Ore domain with right quotient ring D having center F such that $D=R F$, then R is strongly K-primitive.

Several obvious questions arise concerning K-primitive rings:

1. Are left and right K-primitivity equivalent?
2. Converse of Corollary 4. Is every strongly K-primitive ring a right Ore domain which, together with the center of its right quotient ring D, generates D ?
3. Is every right Ore domain K-primitive? Strongly K-primitive?
4. Can the hypothesis $Q=R F$ in Theorem 1 be removed? Equivalently, is every prime right Goldie ring K-primitive?
These questions are open except for the second part of 3: Any simple right Noetherian domain, not a division ring, is a right Ore domain but is not strongly K-primitive; it is K-primitive however, by Corollary 2 . Also, question 2 can be answered partially by

Proposition 2. Every strongly K-primitive ring is a right Ore domain.
Proof. Let a and b be nonzero elements of the strongly K-primitive ring R. By maximality of the zero right ideal, every nonzero right ideal I of R satisfies $(I: R) \neq 0$. In particular $(b R: R) \neq 0$, so there exists $b_{1} \neq 0$ in R such that $R b_{1} \subset b R$. If $a b=0$, then $a R b_{1} \subset a b R=0$, a contradiction since R is prime; thus R has no zero divisors. Moreover, since $a b_{1} \in R b_{1} \subset b R$, there exists $a_{1} \neq 0$ in R such that $a b_{1}=b a_{1}$, so R is a right Ore domain.

In [1] Ortiz showed that every K-primitive ring can be embedded in a full ring of linear transformations of a vector space over a division ring. We shall investigate this embedding and in fact prove an analogue of Jacobson's density theorem for K-primitive rings. One formulation of density is the following: If V is a vector space over a division ring D, then a subring R of $\operatorname{Hom}_{D}(V, V)$ is dense if and only if V is irreducible and for every finite-dimensional subspace W and every vector $u \notin W,(u(0: W): V)=R$. A slight variation of this definition leads to the desired characterization of K-primitive rings. We first define V to be K-irreducible if and only if $v R a=0$ with $v \in V$ and $a \in R$ implies $v=0$ or $a=0$. A subring R of $\operatorname{Hom}_{D}(V, V)$ will be called K-dense if and only if V is K-irreducible and for every finite-dimensional subspace W and every vector $u \notin W,(u(0: W): V) \neq 0$.

Theorem 2. If R is a K-primitive ring, V is a faithful module in K_{R}, and \bar{V} is the quasi-injective hull of V, then $D=\operatorname{Hom}_{R}(\bar{V}, \bar{V})$ is a division ring, V is a vector space over D, and R is a K-dense subring of $\operatorname{Hom}_{D}(V, V)$. Conversely, if a ring R is a K-dense subring of $\operatorname{Hom}_{D}(V, V)$ for some vector space V over a division ring D, then R is K-primitive, $V \in K_{R}$, and $D=\operatorname{Hom}_{R}(\bar{V}, \bar{V})$.

Proof. Assume first that R is a K-primitive ring with V a faithful module in K_{R}. Ortiz [1] has shown that D is a division ring, that V is a vector space over D, and that the mapping $a \rightarrow a^{\prime}$ defined by $v a^{\prime}=v a$ for $v \in V$ and $a \in R$ is an embedding of R in $\operatorname{Hom}_{D}(V, V)$. We must show that R is K-dense. Let $a \neq 0$ be in R and let $N=\{v \in V \mid v R a=0\} . N$ is a submodule
of V and if $N \neq 0$, then $(N: V) \neq 0$, whence there exists $b \neq 0$ in R such that $V b R a \subset N R a=0$. This implies that $b R a=0$, a contradiction since R is prime. Thus $N=0$, that is, V is K-irreducible. If we show that for every finite-dimensional subspace W and every vector $u \notin W$, we have $u(0: W) \neq$ 0 , then $u(0: W)$, being a nonzero submodule of V, would satisfy $(u(0: W): V) \neq 0$, thereby proving that R is K-dense. Suppose then that W is a finite-dimensional subspace of smallest dimension for which there is a vector $u \notin W$ such that $u(0: W)=0$. If $W=0$, then $u(0: W)=u R \neq 0$, so $\operatorname{dim} W>0$. Let $W=W_{0}+w D$ where

$$
\operatorname{dim} W_{0}=\operatorname{dim} W-1
$$

and $w \notin W_{0}$. The mapping $T: w\left(0: W_{0}\right) \rightarrow u\left(0: W_{0}\right)$ defined by $(w a) T=u a$ for $a \in(0: W)$ is well-defined since $w a_{1}=w a_{2}$ with a_{1}, a_{2} in $\left(0: W_{0}\right)$ implies

$$
a_{1}-a_{2} \in\left(0: W_{0}\right) \cap(0: w)=(0: W)
$$

and hence $u\left(a_{1}-a_{2}\right)=0$. Since \bar{V} is quasi-injective, T can be extended to $\lambda \in \operatorname{Hom}_{R}(\bar{V}, \bar{V})=D$. For any $a \in\left(0: W_{0}\right)$ we have

$$
u a=(w a) T=(w a) \lambda=(w \lambda) a
$$

and so $(u-w \lambda)\left(0: W_{0}\right)=0$. By minimality of W we must have $u-w \lambda \in$ W_{0} and hence $u \in W_{0}+w D=W$, a contradiction. This proves that R is K-dense.
Conversely, assume that R is a K-dense subring of $\operatorname{Hom}_{D}(V, V)$ for some vector space V over a division ring D. Suppose A and B are left ideals of R such that $A B=0$. Choose $a \neq 0$ in A and $v \neq 0$ in V. For any $b \in B$ we have $v R a R b \subset v A B=0$. The K-irreducibility of V implies that $v R a \neq 0$, so choosing $r \in R$ such that $v r a \neq 0$, we have vraRb $=0$ and by K-irreducibility again we have $b=0$. Thus R is a prime ring. Suppose N is a nonzero R-submodule of V and choose $u \neq 0$ in N. Taking $W=0$ we have

$$
0 \neq(u(0: W): V)=(u R: V) \subset(N: V)
$$

and hence $V \in K_{R}$ and R is K-primitive. To show that $D=\operatorname{Hom}_{\underline{R}}(\bar{V}, \bar{V})$, let $\lambda \in D$. The mapping $v \rightarrow v \lambda$ can be extended to $\lambda^{\prime} \in \operatorname{Hom}_{R}(\bar{V}, \bar{V})$. We shall show that λ^{\prime} is unique and that identifying λ with λ^{\prime} yields the desired conclusion. Suppose λ^{\prime} and $\lambda^{\prime \prime}$ are both extensions of $v \rightarrow v \lambda$. Then $\lambda^{\prime}-\lambda^{\prime \prime}$ is in $\operatorname{Hom}_{R}(\bar{V}, \bar{V})$ and since the latter is a division ring, either $\lambda^{\prime}-\lambda^{\prime \prime}$ is one-to-one or $\lambda^{\prime}-\lambda^{\prime \prime}$ is 0 . Since

$$
\operatorname{ker}\left(\lambda^{\prime}-\lambda^{\prime \prime}\right) \supset V \neq 0
$$

we have $\lambda^{\prime}=\lambda^{\prime \prime}$. Thus the identification of λ with λ^{\prime} is well defined and embeds D in $\operatorname{Hom}_{R}(\bar{V}, \bar{V})$. To complete the proof we must show that every element of $\operatorname{Hom}_{R}(\bar{V}, \bar{V})$ is λ^{\prime} for some $\lambda \in D$. Suppose $f \neq 0$ is in $\operatorname{Hom}_{R}(\bar{V}, \bar{V})$; since f is one-to-one, $0 \neq V f \subset V$. Thus there exist u, w in V such that $u=w f \neq 0$. Suppose u and w are linearly independent over D.

Then $(u(0: w): V) \neq 0$ so there exists $a \neq 0$ in R such that

$$
V a \subset u(0: w)=(w f)(0: w)=w(0: w) f=0,
$$

a contradiction. Hence u and w are linearly dependent, say $u=w \lambda$ for some $\lambda \in D$. Then $w\left(\lambda^{\prime}-f\right)=0$ and hence $\lambda^{\prime}-f$, not being one-to-one, must be 0.

References

1. A. H. Ortiz, On the structure of semiprime rings, Proc. Amer. Math. Soc. 38 (1973), 22-26. MR 47 \# 1847.
2. E. C. Posner, Prime rings satisfying a polynomial identity, Proc. Amer. Math. Soc. 11 (1960), 180-183. MR 22 \#2626.

Department of Mathematics, University of Missouri-Kansas City, Kansas City, Missouri 64110

