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LINEAR FRACTIONAL MAPS AND JORDAN ALGEBRAS

KYM S. WATSON

Abstract. Jordan algebras are characterized from amongst the finite

dimensional commutative algebras without the use of identities. This is

achieved by investigating the properties of the linear fractional trans-

formations generated by the quasi-inversion and all translations.

In [3], M. Koecher characterized unital Jordan algebras as homogeneous

unital commutative algebras. Some further descriptions may be found in [1].

Here we give another characterization in terms of the linear fractional

transformations generated by the quasi-inversion and all translations. This

result reinforces the special role played by the linear fractional maps in

Jordan algebras.

1. The Lie algebras Rat V and Pol V. Let A be an infinite field of

characteristic different from 2 and 3, and V a finite dimensional vector space

over A. The rational maps V -> V, Rat V, and the polynomial maps V -» V,

Pol V, form Lie algebras over A with the product

[h, k](x) = (dh)k(x) - (dk)h(x)   (see [4]).

Let Dt - D,(V), i = -1, 0, 1, . . . , be the subspace of Pol V of all

polynomials homogeneous of degree /' + 1. Then [D¡, Dj] c Di+J and

PolK=   +    Dt(V)
i> — 1

is a graded decomposition of Pol V. We will identify D _ x with V.

2. The quasi-inversion. Let A be a finite dimensional commutative algebra

over A. By adjoining a unit element e to A we can form a new commutative

algebra with inversion. The quasi-inversion is the unique birational map q in

Rat A satisfying

(e + x)(e + q(x)) = e.

Then q2 = id, q(0) = 0, and (dnq)0(x, ...,*) = (- \)nn\x" where xn+x =

xx" for n = 1,2, . . . . Define the rational map Q: A —> End A by Q(x) =

-{dq)-K
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3. Linear fractional maps.

Definition. Let G (A) be the group of birational transformations of A

generated by the quasi-inversion q and all translations Ta(x) = a + x, a E

A.

If A has a unit element e0, with inversion j, then q = T_ jT and G (A) is

generated by./ and all translations.

Definition, (a) Let LX(A) be the Lie subalgebra of Rat A generated by all

the h E Rat A such that id + 8h £ G(A ®K K[8]) where K[8] is the algebra

of dual numbers over K (82 = 0).

(b) Let L2(A) be the Lie subalgebra of Rat A generated by D_X(A) and all

Q(x)a, a G A.

4. Characterizations of Jordan algebras.

Theorem. Let A be a commutative finite dimensional algebra over K. Then

the following statements are equivalent:

(1) A is a Jordan algebra.

(2) LX(A) is a subspace of D_x + D0 + Dx.

(3) L2(A) is a subspace of D_x + D0 + Dx.

(4) Q (x) is a polynomial map A —> End A of degree 2 or less.

Proof. (1)=>(2). For every finite dimensional Jordan algebra A over K,

consider the Lie subalgebra L(A) of Pol A generated by D_X(A), id and

v(x) = x2. Then L(A) is well known to be the linear span of all constant

maps x -» a, a E A, all quadratic polynomial maps of the form x —» 2x(xa)

— x2a, a E A, all linear maps of the form x -» b(xa) + x(ba) — (bx)a, a,

b E A, and the identity map (see [2] for a proof; the assumption made there

that K be the reals is not used). Hence L(A) is a binary Lie algebra in the

sense of [4]. We will use the results of [4].

Let Birat A be the group of birational transformations of A. For every

/ E Birat A and AGRat^, define hf E Rat A by

hf(x) = (df);ih(f(x)).

Now for every/ E Birat A define the automorphism Vy of Rat A by

vÁh) = hf-',

and hence V is a monomorphism from Birat A into the group of

automorphisms of Rat ,4 (see [4, Kapitel I, §1,6]).

We claim that Vf maps L(A) into itself for all / £ G(A). It suffices to

prove this forf=Ta,aBA, and for/ = q, the quasi-inversion of A.

If / = Ta, then Vf maps L(A) into itself by [4, Kapitel I, §3,2].

Let A ' be the unital Jordan algebra obtained by adjoining a unit element e

to A. For x, y £ A', let P(x)y = 2x(xy) - x^. Define w £ Birat A by
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w(x) = — x. Fot x G A,

(q » w)(x) = (e — x)~ — e

= P(e- x)~\e- x - P(e - x)e)   (as F(.y)~1.y =^_1)

= P(e- x)~\x - x2).

A simple calculation shows that P(e — x) = Bv(x) on A where

Bv(x)a = {a-[v,a] + ± [v, [v, a]])(x)

for a, x G A. Hence (q ° w)(x) = Bv(x)~\x - v(x)) and V9ow maps L(A)

into itself by [4, Kapitel II, Lemma 1.2]. Now Vw(h) = w ° h ° w~l for

h G Rat A. Hence Vw maps L(A) into itself. Therefore V? = V?o w ° Vw also

maps L(yi) into itself.

Now let h G Rat A be such that / = id + ôh G G (A ®K K[S]). Then by

the above Vf maps L(A ®K A[5]) into itself. Note that the given description

of the Lie algebras L(B) for Jordan algebras B shows that L(A ®K K[8]) is

naturally isomorphic to L(A) ®K K[8]. Since

(VAp))(x) = (id + 8(dh)Jp(x - 8h(x))=p(x) + 8[h,p](x)

for p G L(A) c L(A ®K K[8]) and for x G A, it follows that [h, L(A)] c

L(A). Hence p^>[h,p] is a derivation of F(/l) for all h G LX(A). By [4,

Kapitel II, Satz 3.1] there exists, for each h G LX(A), h' G D_X(A) + D0(A)

+ DX(A) such that [h - h', L(A)] = 0. We will now show that if h G Rat A

is such that [h, L(A)] = 0, then h = 0. From this and from the above

remarks, it will then follow that LX(A) is a subspace of D_X(A) + D0(A)

+ DX(A).

Let h G Rat ^ be such that [h, L(A)] = 0. Then

(dh)x(a)=[h,a](x) = 0

for all a G A. So from

0=[/I,id](x) = (i//J)x(x)-/I(x),

we can deduce that h = 0.

(2)=>(3). Since Fa5(x) = x + a8 and qT_Saq(x) = x + Sg(jc)a, then

L2(j4) is a subalgebra of F [(/I).

(3) => (4). This is evident.

(4) => (1). Let g(x) = (^)x(fl)- Then» since g ° ?(x) = - Q(x)a,

0 = (d>(g°q))o(x,x,x)

= (rf3g)0((^)0(x), (^)0(x), (dq)0(x))

+ 3(d2g)Q((d2q)0(x, x), (dq)0(x)) + (dg)Q((d3q)n(x, x, x))

= -(d4q)0(x, x, x, a) - 6{d\)0(x2, x, a) - 6(d2q)0(x\ a)

= -6(ax3 + x(ax2) + 2x(x(xa)))

+ 6(2ax3 + 2x2(ax) + 2x(ax2)) - 6(2ax3).
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Hence

0 = ax3 — x(ax2) + 2x(x(xa)) — 2x2(ax). (*)

Set a = x and deduce that x4 = x2x2. Differentiate the last equation to

obtain ax3 + x(ax2) + 2x(x(xa)) = 4(xa)x2. Finally, add this equation to

(*): x(x2a) = x2(xa) as required,   fj

Theorem. Let A be a finite dimensional unital commutative algebra over K

with inversion j. Then the following statements are equivalent.

(1) A is a Jordan algebra.

(2) (dj)~ ' is a polynomial map A -» End A.

Moreover i/char K = 0, then (1) and (2) are each equivalent to

(3) LX(A) is finite dimensional.

(4) L2(A) is finite dimensional.

Proof. (1) => (2). This is well known [1].

(2)=>(1). Since q= T_ejTe, where e is the unit element of A, then

Q(x) = -(dj)~le is a polynomial map A —> End A of degree 2. The previous

theorem now implies that A is a Jordan algebra. Assume now that char K =

0.

(1) => (3). This was done above.

(3) => (4). This is clear since L2(A) is a subspace of LX(A).

(4) => (2). The rational maps p„(x) = [(d"Q)x(ax, . . . , an)](y), n =

1, 2, ... , belong to L2(A) as they are formed by successively commutating

by a¡, starting with Q(x)y. Moreover, pn(x — e) is homogeneous of degree

2 - n. Hence, for some m, pn(x) = 0 for all ax, . . . , an £ A and for all

n > m. Since char K = 0, Q(x) is a polynomial map A —> End A. Therefore

(dj)~ ' is a polynomial map A —» End A.   fj

5. A counterexample. Let A be a finite dimensional commutative algebra

over K in which any product of n elements is zero. Then q(x) =

'2,"„Jl(- \)mxm, (dq)~l is a polynomial map A -^ End A, and L2(A) is finite

dimensional, but A need not be a Jordan algebra.
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