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EXTREME POINTS OF SUBCLASSES OF

CLOSE-TO-CONVEX FUNCTIONS

h. silverman' and d. n. TELAGE

Abstract. We determine coefficient bounds, distortion and covering theo-

rems, and the extreme points for various subclasses of close-to-convex

functions. All results are sharp.

1. Introduction. Let § denote the class of functions of the form/(z) = z +

2*=2a„z'! that are analytic and univalent in the unit disk 6li. A normalized

function / is said to be close-to-convex if there exists a function

g(z) = bxz + --- (ReZ>, >0) (1)

starlike with respect to the origin for which

Re{zf'/g) > 0       (zG %). (2)

It is well known [3] that the close-to-convex functions, denoted by ß, are

contained in S.

In this paper we investigate distortion properties, coefficient bounds, and

the extreme points of several subclasses of ß. A function / is said to be in (?,

if there exists a convex function g of the form (1) such that (2) is satisfied. If

there exists such a g satisfying

Re{[z/']'/g'}>0       (¿e^)

then/is said to be in ß^. If

Re{[z[z/']']'/[zg']'}>0       (;£%),

then/is said to be in (?3. In relating these classes to one another, we will rely

on the following lemma due to Sakaguchi [4].

Lemma A. Let F(z) = z + • • ■ be analytic and G(z) = bxz + ■ ■ ■ be

analytic and starlike in % with Re bx > 0. // Re F'/G' > 0 (z G %), then

ReF/G >0(z G 91).

Since g convex implies zg' is starlike, an application of Lemma A shows

that ßj c ß2. Reapplying Lemma A we see that ß2 c ßx. Further S, C ß
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because convex functions are starlike. We thus have the inclusion relations

63 c e, c e, c e.
Geometrically, a function / is in the family 6^ if zf maps each circle

z = re'8 (r < 1) onto a simple closed curve whose unit tangent vector never

drops back on itself more than it radians as 9 increases. That is, / £ 6^ if and

only if zf E G. The family 6,, while a proper subclass of the close-to-convex

functions, is not contained in the family of starlike functions. In fact, there

exist functions in Gj that are not starlike. For example, the function

1  /    \ 1   —   / Z 1    +   J     , ,, X*<*> = — 1^7 - — log(1 - z)

is shown in the next section to be in 6^. However for e sufficiently small,

Re(zA'(z)/A(z)) < 0 when z = ew, -e < 9 < 0.

2. Extreme points of C, and 0^. For a compact family ff, we denote the

closed convex hull of ff by cl co ®s and the extreme points of cl co 5F by

S (cl co ff).

Theorem I. Let X be the torus {(x,y)\x\ = \y\ = 1}, F be the set of

probability measures on X,

k(z,x,y) = (1 + *)yz— + *V log(l - yz),

where z E % and \x\ = | v| = 1, and let ff be the set of functions jj, defined by

h (z) = ( k(z, x, y) dn(x, y),       |iE?.
Jx

Then

cl co C, = ff

S(clcoe,) = {¿(z,x,v)|x^ -1}.

Proof. Our proof will follow along the Unes of the proof for S (cl co C),

found in [1]. We first show that cl co S, c ff. If / E 6,, then p(z) =

zf'(z)/g(z) has positive real part in % for some convex function g. By

Herglotz' theorem, we can express p(z) as

P(°)« + F(0) z
- da(u) (3)

for some a a probability measure on the unit circle T. In [1] it is shown that

we can express g(z) as

f    S'(0)z

where ^ is also a probability measure on T. Since g'(0)F(0) = 1, we use (3), (4)
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and Fubini's theorem to obtain

/.w.Jri±ieÄ2i<hW.jrT^_(W„)

= f   „     X-\^Z-: da(u)dß(v),
X    (1  - Wz)(l  - VZ)

where e = p(0)g'(0) satisfies |e| = 1. To show that/ G S it is sufficient to

show that the kernel functions in (5) belong to S', the set of derivatives of

functions belonging to S. By a theorem in [1], given u and v there is a

probability measure y on T such that

(l-«z)(l-cz)      Jr (1-wz)2      V  '

Thus we need only show for arbitrary w, \w\ = 1, that we can find x, y,

\x\ = \y\ = 1, such that

d   , , ,       1 + xyz I + eüz
k(z,x,y) =

dz (1 -yz)2      (1 - wz)2 '

Choosing the unit point mass k(z, x,y) = k(z, ewu, w), we see that cl co 6,

Cf.
To show that 'S c cl co ßx, we need only show that {k(z, x,y)} c ßx for

jjc| = \y\ = 1. Choose a complex number 8 = 8(x) so that Re{5(l + xyz)/(\

- yz)} > 0. Since g(z) = z/5(l - yz) is convex, we have

zdk(z,x,y)/dz              8(1 +xyz)
Re -—- = Re —- > 0,

g(z) 1 - yz

which shows that [k(z, x,y)} c ßx.

Thus the only possible extreme points for 6, are {k(z, x,y)}. Taking g = /

in the definition of 6, and noting that convex functions are starlike, we see

that 6, contains the convex functions. Since k(z, — 1, v) = — y log(l — yz)

is convex but is not an extreme point of the closed convex hull of convex

functions, it cannot be an extreme point of the larger set cl co ßx.

Excluding x0 = — 1 from consideration, it suffices to show that for each x0,

7o. l*ol - bol = !>

k(z, x0,y0) = /  k(z, x,y) dp(x,y) (6)
Jx

is possible only if p is a unit point mass at (x0, y0). Differentiating both sides

of (6) with respect to z, we obtain

1 + x0 y<yz      f     1 + xyz
— =)x (1    ...v» dv(x,y)-

(1-yozY     Jx  (1-yzY
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Setting z = y0r and letting r -> 1 ~, we have

2

1 + *b - lim    r ( /     :   ) ( 1 + w) ¿M*- y)- (7)
r-»l-   -M   1  -  VV0/- /

Since the integrand in (7) is bounded by 2, we may apply the Lebesgue

bounded convergence theorem to obtain

1 + x0 = j (1 + *) ¿«(-«..y)-

Setting r0 = T X {y0} and a = jn(ro), we have 0 < a < 1 and

1 + x0= a + ( xd¡i(x,y). (8)
■To

Since \x0 + (1 - a)\ = \fTx d¡i(x, v)| < a and |x0 + (1 - a)\ > |jc0| — (1 -

a) = a, we must have x0 = —\ or a = 1. Since x0 =^ — 1, it follows that

a = 1. From (8) we have x0 = (rx d¡i(x, y), which can hold only if ¡x is a unit

point mass at (x0, y0).

Corollary  1. If f(z) = z + 2™=2a„z" E 6,, then \a„\ < 2 - 1/n, vwïA

equality for k(z, 1, — 1).

Proof. We need only consider/ E C, of the form k(z, x,y). It is easy to

see that the modulus of the coefficients of k are maximized when x = 1 and

y = -l.
Similarly we have

Corollary 2. Iff £ 6,, /Ae«

log(l + r) < |/(z)| < -^- + log(l - r)        (|z| < r)1 + r ov

and

—2 < !/'(*)! < TT^-TI       d2l < r)'
(1 + rf (1 - r)

with equality for k(z, 1, 1) at z = ± r.

We can use similar arguments to determine the extreme points of 62. But

we will use known results for 6 to give a quicker proof.

Theorem 2. Let X be the torus {(x,y)\ \x\ = |y| = 1), ff be the set of

probability measures on X,

A(z, x,y) = —-—   y——-2— ^ loê0 " ^z)

/or |jc| = |y| = 1, and let ff be the set of functions f defined by

f¡í(z)=jh(z,x,y)dli(x,y)       (M E ff).
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r   1 - (x + yy/2
h(z, x,y) = J- df,

Jo M - vt\2

Then

cl co ß2 = S

and

g(clco 62) = [h(z, x,y)\x =£y).

Proof. Observe that / G ß2 if and only if zf G ß. Thus the operator L

defined by L(f) = /0/(f)/£ df is a linear homeomorphism on the space of

analytic functions with L(ß) = ß2. Since

M   l-(x+y)S/2

the result follows from the results for ß proved in [1].

Corollary. Iff(z) = z + 2"_2<V" G ß^, then \an\ < 1 and

TT7 < l/(*)l < jir-r      (W < 0-

(1 + r) (1 - r)

Equality in all cases is obtained for f (z) = z/(\ — z).

Remarks. The extreme points of both C, and ß^ are linear combinations

of the extreme points of the convex functions and the functions convex of

order \. See [2]. Setting x = — y, we see that the extreme points of convex

functions are contained in those for ß2.

3. The class 63. The standard techniques cannot be applied to determine

the extreme points of cl co 63 because of the presence of an additional

parameter in the numerator. Nevertheless we still have sharp coefficient

bounds and distortion theorems for the class ßj.

Theorem 3. If f(z) = z + 2~=2a„z" G ßi, then \an\ < 2/3 + l/3n2. This

result is sharp, with equality for

f, \   2   z     1 r log(1 ~r) *
/(z)=3 TT?- 3 Jo  -1-*

Proof. If/ G (2,, then there exists a convex function g(z) = 2Z^=xbnzn and

a function of positive real partp(z) = ^=Qcnzn with \bx\ = \c0\ = 1 such that

[z[zf']'Y = [zg']'p. Then
00 / 00 \ / 00 \

[z[z/']']'= 2 «v-1-   2 «V-1   2 v" •
n=l \n=l /\« = 0 /

Equating coefficients, we have n3an = ^"k = xk2bkcn_k. It is well known that

\bn\ < 1 and \c„\ < 2 for « > 1. Hence

"-' n(n - \)(2n - 1)
n3\an\ < 2 2   k2+ n2 =-£-- + «2,

fe-l ■>
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which simplifies to \a„\ < f +1/3«2. To show that the extremal function is in

S3, we takeg(z) = z/(l - z).

Theorem 4. Iff E 63, then

2        r \    r  l°Z(l + ')2 _j_ + i r
3    1 + r      3   J0

2        r \   r  lo%(1 ~ 0
< i/wi < 1T37 - i r ^v^ * m < *

2 _J__      1    log(l + 0

3 (1 + r)2       3 r

2      _J_ log(l - r)

(1 - r):

Equality holds in all cases for the extremal function of Theorem 3.

«""Ml«! TTT^-1 "V"*     <°<I*K'>-

Proof. Setting A = zf, we may write [zA']' = pg', where p(z) is a function

of positive real part, g(z) is a starlike function, and \p(0)\ = |g'(0)l = 1. It is

well known that (1 - r)/(\ + r) < \p(z)\ < (1 + r)/(\ - r) and (1 - r)/(\

+ rf < \g'(z)\ < (1 + r)/(\ - r)3 for |z| < r. Hence

(1 - rf (1 + rf
±>   < |[*A'W]'I < 1-£        (|z| < r). (9)
(1 + r) (1 - r)

Integrating along the straight line segment from the origin to z — re'9 in the

right inequality of (9) we obtain

\2
«    II   Til T.r  4.   ri

\zh'(z)\ < /     ^-'- dt=   *r + r (|z| = r). (10)
Jo    (i - fV 3Í1 - r)3

0 + 0     ,       3r + r3
-1 dt= -;
(1 - tf 3(1 - r)3

Now for every r choose z0, |z0| = r, such that |A'(z0)| = minw_,|A'(z)|. If

L(z0) is the pre-image of the segment (0, ZqA^Zo)}, then

|zA'(z)| > |z0A'(z0)| = f       |(zA'(z))'| |<fe|
JL{za)

rr   (1 — t) ~\r + r3

>f-1   d'= 3   • (11)
•A)    (1 + i)4 3(1 + rf

In view of (10) and (11),

3 + r\ < |[*/'(*)]'| <    3 + r\    (|*|-r).
3(1 + rf        L     y n        3(1 -r)3    ll  '        '

Using again the method that gave us (10) and (11), we obtain

+ I log(l + r) < |z/'(z)| < f   —■!—- - \ log(l - r).
(1 + rf      3 3    (i _ rf      3
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2     r    +l   r 1°g(1 + 0 dt
1 + r      3

2        r \    T 1°g(1 - ')   du

One more application yields

3   Jo

<!/(*)!<§ 1^7 "i/o

The coefficient bounds give some indication as to the degree of contain-

ment of ßj c ß2 C ßx. Another measure is the following covering theorem.

Theorem 5. The disk % is mapped onto a domain that contains the disk

\w\ < 1 — log 2 « 0.31 by any f G ßx, onto a domain that contains the disk

\w\ < 0.50 by any f G ß2, and onto a domain that contains the disk \w\ < (it2

+ 12)/36 « 0.61 by any f G ß,.

Proof. Let r -* 1 " in the lower bound of the distortion results for / in the

three classes.
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