EXTREME POINTS OF SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS

H. SILVERMAN¹ AND D. N. TELAGE

ABSTRACT. We determine coefficient bounds, distortion and covering theorems, and the extreme points for various subclasses of close-to-convex functions. All results are sharp.

1. Introduction. Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic and univalent in the unit disk \mathfrak{A} . A normalized function f is said to be close-to-convex if there exists a function

$$g(z) = b_1 z + \cdots \qquad (\text{Re } b_1 > 0) \tag{1}$$

starlike with respect to the origin for which

$$\operatorname{Re}\{zf'/g\} > 0 \qquad (z \in \mathfrak{A}). \tag{2}$$

It is well known [3] that the close-to-convex functions, denoted by \mathcal{C} , are contained in S.

In this paper we investigate distortion properties, coefficient bounds, and the extreme points of several subclasses of C. A function f is said to be in C_1 if there exists a convex function g of the form (1) such that (2) is satisfied. If there exists such a g satisfying

$$\operatorname{Re}\{\lceil zf'\rceil'/g'\} > 0 \qquad (z \in \mathfrak{A})$$

then f is said to be in C_2 . If

$$\operatorname{Re}\left\{\left[\left.z[zf'\,]'\right]'/\left[\left.zg'\,\right]'\right\}>0\qquad(z\in\mathfrak{A}),\right.$$

then f is said to be in \mathcal{C}_3 . In relating these classes to one another, we will rely on the following lemma due to Sakaguchi [4].

LEMMA A. Let $F(z) = z + \cdots$ be analytic and $G(z) = b_1 z + \cdots$ be analytic and starlike in $\mathfrak A$ with $\operatorname{Re} b_1 > 0$. If $\operatorname{Re} F'/G' > 0$ $(z \in \mathfrak A)$, then $\operatorname{Re} F/G > 0$ $(z \in \mathfrak A)$.

Since g convex implies zg' is starlike, an application of Lemma A shows that $\mathcal{C}_3 \subset \mathcal{C}_2$. Reapplying Lemma A we see that $\mathcal{C}_2 \subset \mathcal{C}_1$. Further $\mathcal{C}_1 \subset \mathcal{C}_2$

Received by the editors January 23, 1978 and, in revised form, March 20, 1978. AMS (MOS) subject classifications (1970). Primary 30A32, 30A40; Secondary 30A34.

Key words and phrases. Univalent, starlike, convex, close-to-convex, extreme point.

¹ The research of the first author was supported in part by a College of Charleston summer research grant, and was completed while visiting at the University of Kentucky.

^{© 1979} American Mathematical Society 0002-9939/79/0000-0161/\$02.75

because convex functions are starlike. We thus have the inclusion relations $\mathcal{C}_3 \subset \mathcal{C}_2 \subset \mathcal{C}_1 \subset \mathcal{C}$.

Geometrically, a function f is in the family \mathcal{C}_2 if zf' maps each circle $z=re^{i\theta}$ (r<1) onto a simple closed curve whose unit tangent vector never drops back on itself more than π radians as θ increases. That is, $f\in\mathcal{C}_2$ if and only if $zf'\in\mathcal{C}$. The family \mathcal{C}_1 , while a proper subclass of the close-to-convex functions, is not contained in the family of starlike functions. In fact, there exist functions in \mathcal{C}_2 that are not starlike. For example, the function

$$h(z) = \frac{1-i}{2} \frac{z}{1-z} - \frac{1+i}{2} \log(1-z)$$

is shown in the next section to be in C_2 . However for ε sufficiently small, Re(zh'(z)/h(z)) < 0 when $z = e^{i\theta}$, $-\varepsilon < \theta < 0$.

2. Extreme points of C_1 and C_2 . For a compact family \mathcal{F} , we denote the closed convex hull of \mathcal{F} by cl co \mathcal{F} and the extreme points of cl co \mathcal{F} by \mathcal{E} (cl co \mathcal{F}).

THEOREM 1. Let X be the torus $\{(x,y)|x|=|y|=1\}$, P be the set of probability measures on X,

$$k(z, x, y) = (1 + x) \frac{z}{1 - yz} + x\bar{y} \log(1 - yz),$$

where $z \in \mathcal{U}$ and |x| = |y| = 1, and let \mathcal{T} be the set of functions f_{μ} defined by

$$f_{\mu}(z) = \int_{\mathbb{Y}} k(z, x, y) \ d\mu(x, y), \qquad \mu \in \mathfrak{P}.$$

Then

cl co
$$\mathcal{C}_1 = \mathcal{F}$$

and

$$\mathcal{E}(\operatorname{cl} \operatorname{co} \mathcal{C}_1) = \{k(z, x, y) | x \neq -1\}.$$

PROOF. Our proof will follow along the lines of the proof for \mathscr{E} (cl co \mathscr{C}), found in [1]. We first show that cl co $\mathscr{C}_1 \subset \mathscr{F}$. If $f \in \mathscr{C}_1$, then p(z) = zf'(z)/g(z) has positive real part in \mathscr{O} 1 for some convex function g. By Herglotz' theorem, we can express p(z) as

$$p(z) = \int_{\Gamma} \frac{p(0)u + \overline{p(0)} z}{u - z} d\alpha(u)$$
 (3)

for some α a probability measure on the unit circle Γ . In [1] it is shown that we can express g(z) as

$$g(z) = \int_{\Gamma} \frac{g'(0)z}{1 - vz} d\beta(v), \tag{4}$$

where β is also a probability measure on Γ . Since g'(0)p(0) = 1, we use (3), (4)

and Fubini's theorem to obtain

$$f'(z) = \int_{\Gamma} \frac{u + g'(0)\overline{p(0)}z}{u - z} d\alpha(u) \cdot \int_{\Gamma} \frac{1}{1 - vz} d\beta(v)$$
$$= \int_{X} \frac{1 + \varepsilon \overline{u}z}{(1 - \overline{u}z)(1 - vz)} d\alpha(u) d\beta(v), \tag{5}$$

where $\varepsilon = \overline{p(0)}g'(0)$ satisfies $|\varepsilon| = 1$. To show that $f \in \mathcal{F}$ it is sufficient to show that the kernel functions in (5) belong to \mathcal{F}' , the set of derivatives of functions belonging to \mathcal{F} . By a theorem in [1], given u and v there is a probability measure γ on Γ such that

$$\frac{1+\varepsilon \bar{u}z}{(1-\bar{u}z)(1-vz)} = \int_{\Gamma} \frac{1+\varepsilon \bar{u}z}{(1-wz)^2} d\gamma(w).$$

Thus we need only show for arbitrary w, |w| = 1, that we can find x, y, |x| = |y| = 1, such that

$$\frac{d}{dz} k(z, x, y) = \frac{1 + xyz}{\left(1 - yz\right)^2} = \frac{1 + \varepsilon \overline{u}z}{\left(1 - wz\right)^2}.$$

Choosing the unit point mass $k(z, x, y) = k(z, \varepsilon \overline{wu}, w)$, we see that cl co \mathcal{C}_1

To show that $\mathcal{F} \subset \text{cl co } \mathcal{C}_1$, we need only show that $\{k(z, x, y)\} \subset \mathcal{C}_1$ for |x| = |y| = 1. Choose a complex number $\delta = \delta(x)$ so that $\text{Re}\{\delta(1 + xyz)/(1 - yz)\} > 0$. Since $g(z) = z/\delta(1 - yz)$ is convex, we have

Re
$$\frac{zdk(z, x, y)/dz}{g(z)}$$
 = Re $\frac{\delta(1 + xyz)}{1 - yz} > 0$,

which shows that $\{k(z, x, y)\}\subset \mathcal{C}_1$.

Thus the only possible extreme points for C_1 are $\{k(z, x, y)\}$. Taking g = f in the definition of C_1 and noting that convex functions are starlike, we see that C_1 contains the convex functions. Since $k(z, -1, y) = -\bar{y} \log(1 - yz)$ is convex but is not an extreme point of the closed convex hull of convex functions, it cannot be an extreme point of the larger set cl co C_1 .

Excluding $x_0 = -1$ from consideration, it suffices to show that for each x_0 , y_0 , $|x_0| = |y_0| = 1$,

$$k(z, x_0, y_0) = \int_X k(z, x, y) d\mu(x, y)$$
 (6)

is possible only if μ is a unit point mass at (x_0, y_0) . Differentiating both sides of (6) with respect to z, we obtain

$$\frac{1+x_0y_0z}{(1-y_0z)^2} = \int_X \frac{1+xyz}{(1-yz)^2} d\mu(x,y).$$

Setting $z = \bar{y_0}r$ and letting $r \to 1^-$, we have

$$1 + x_0 = \lim_{r \to 1^-} \int_X \left(\frac{1 - r}{1 - y \bar{y}_0 r} \right)^2 (1 + x y \bar{y}_0 r) d\mu(x, y). \tag{7}$$

Since the integrand in (7) is bounded by 2, we may apply the Lebesgue bounded convergence theorem to obtain

$$1 + x_0 = \int_{\Gamma \times \{y_0\}} (1 + x) \, d\mu(x, y).$$

Setting $\Gamma_0 = \Gamma \times \{y_0\}$ and $a = \mu(\Gamma_0)$, we have $0 \le a \le 1$ and

$$1 + x_0 = a + \int_{\Gamma_0} x \, d\mu(x, y). \tag{8}$$

Since $|x_0 + (1-a)| = |\int_{\Gamma_0} x \, d\mu(x, y)| \le a$ and $|x_0 + (1-a)| \ge |x_0| - (1-a) = a$, we must have $x_0 = -1$ or a = 1. Since $x_0 \ne -1$, it follows that a = 1. From (8) we have $x_0 = \int_{\Gamma_0} x \, d\mu(x, y)$, which can hold only if μ is a unit point mass at (x_0, y_0) .

COROLLARY 1. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}_1$, then $|a_n| \le 2 - 1/n$, with equality for k(z, 1, -1).

PROOF. We need only consider $f \in \mathcal{C}_1$ of the form k(z, x, y). It is easy to see that the modulus of the coefficients of k are maximized when x = 1 and y = -1.

Similarly we have

COROLLARY 2. If $f \in \mathcal{C}_1$, then

$$\frac{2r}{1+r} - \log(1+r) \le |f(z)| \le \frac{2r}{1-r} + \log(1-r) \qquad (|z| \le r)$$

and

$$\frac{1-r}{(1+r)^2} \le |f'(z)| \le \frac{1+r}{(1-r)^2} \qquad (|z| \le r),$$

with equality for k(z, 1, 1) at $z = \pm r$.

We can use similar arguments to determine the extreme points of C_2 . But we will use known results for C to give a quicker proof.

THEOREM 2. Let X be the torus $\{(x,y)||x|=|y|=1\}$, \mathfrak{P} be the set of probability measures on X,

$$h(z, x, y) = \frac{1 - x\bar{y}}{2} \frac{z}{1 - yz} - \frac{1 + x\bar{y}}{2} \bar{y} \log(1 - yz)$$

for |x| = |y| = 1, and let \Im be the set of functions f_{μ} defined by

$$f_{\mu}(z) = \int_{X} h(z, x, y) \ d\mu(x, y) \qquad (\mu \in \mathcal{P}).$$

Then

cl co
$$\mathcal{C}_2 = \mathcal{F}$$

and

$$\mathcal{E}(\operatorname{cl} \operatorname{co} \mathcal{C}_2) = \{h(z, x, y) | x \neq y\}.$$

PROOF. Observe that $f \in \mathcal{C}_2$ if and only if $zf' \in \mathcal{C}$. Thus the operator L defined by $L(f) = \int_0^z f(\zeta)/\zeta \,d\zeta$ is a linear homeomorphism on the space of analytic functions with $L(\mathcal{C}) = \mathcal{C}_2$. Since

$$h(z, x, y) = \int_0^z \frac{1 - (x + y)\zeta/2}{(1 - y\zeta)^2} d\zeta,$$

the result follows from the results for \mathcal{C} proved in [1].

COROLLARY. If
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}_2$$
, then $|a_n| \le 1$ and $\frac{r}{1+r} \le |f(z)| \le \frac{r}{1-r}$ $(|z| \le r)$, $\frac{1}{(1+r)^2} \le |f'(z)| \le \frac{1}{(1-r)^2}$ $(|z| \le r)$.

Equality in all cases is obtained for f(z) = z/(1-z).

REMARKS. The extreme points of both C_1 and C_2 are linear combinations of the extreme points of the convex functions and the functions convex of order $\frac{1}{2}$. See [2]. Setting x = -y, we see that the extreme points of convex functions are contained in those for C_2 .

3. The class C_3 . The standard techniques cannot be applied to determine the extreme points of cl co C_3 because of the presence of an additional parameter in the numerator. Nevertheless we still have sharp coefficient bounds and distortion theorems for the class C_3 .

THEOREM 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \mathcal{C}_3$, then $|a_n| \le 2/3 + 1/3n^2$. This result is sharp, with equality for

$$f(z) = \frac{2}{3} \frac{z}{1-z} - \frac{1}{3} \int_0^z \frac{\log(1-\zeta)}{\zeta} d\zeta.$$

PROOF. If $f \in \mathcal{C}_3$, then there exists a convex function $g(z) = \sum_{n=1}^{\infty} b_n z^n$ and a function of positive real part $p(z) = \sum_{n=0}^{\infty} c_n z^n$ with $|b_1| = |c_0| = 1$ such that |z[zf']'| = |zg'|'p. Then

$$[z[zf']']' = \sum_{n=1}^{\infty} n^3 a_n z^{n-1} = \left(\sum_{n=1}^{\infty} n^2 b_n z^{n-1}\right) \left(\sum_{n=0}^{\infty} c_n z^n\right).$$

Equating coefficients, we have $n^3a_n = \sum_{k=1}^n k^2b_kc_{n-k}$. It is well known that $|b_n| \le 1$ and $|c_n| \le 2$ for $n \ge 1$. Hence

$$|n^3|a_n| \le 2\sum_{k=1}^{n-1} k^2 + n^2 = \frac{n(n-1)(2n-1)}{3} + n^2,$$

which simplifies to $|a_n| \le \frac{2}{3} + 1/3n^2$. To show that the extremal function is in C_3 , we take g(z) = z/(1-z).

THEOREM 4. If $f \in \mathcal{C}_3$, then

$$\frac{2}{3} \frac{r}{1+r} + \frac{1}{3} \int_0^r \frac{\log(1+t)}{t} dt$$

$$\leq |f(z)| \leq \frac{2}{3} \frac{r}{1-r} - \frac{1}{3} \int_0^r \frac{\log(1-t)}{t} dt \qquad (|z| \leq r),$$

$$\frac{2}{3} \frac{1}{(1+r)^2} + \frac{1}{3} \frac{\log(1+r)}{r}$$

$$\leq |f'(z)| \leq \frac{2}{3} \frac{1}{(1-r)^2} - \frac{1}{3} \frac{\log(1-r)}{r} \qquad (0 < |z| \leq r).$$

Equality holds in all cases for the extremal function of Theorem 3.

PROOF. Setting h = zf', we may write [zh']' = pg', where p(z) is a function of positive real part, g(z) is a starlike function, and |p(0)| = |g'(0)| = 1. It is well known that $(1-r)/(1+r) \le |p(z)| \le (1+r)/(1-r)$ and $(1-r)/(1+r)^3 \le |g'(z)| \le (1+r)/(1-r)^3$ for $|z| \le r$. Hence

$$\frac{(1-r)^2}{(1+r)^4} \le |[zh'(z)]'| \le \frac{(1+r)^2}{(1-r)^4} \qquad (|z| \le r). \tag{9}$$

Integrating along the straight line segment from the origin to $z = re^{i\theta}$ in the right inequality of (9) we obtain

$$|zh'(z)| \le \int_0^r \frac{(1+t)^2}{(1-t)^4} dt = \frac{3r+r^3}{3(1-r)^3} \qquad (|z|=r).$$
 (10)

Now for every r choose z_0 , $|z_0| = r$, such that $|h'(z_0)| = \min_{|z|=r} |h'(z)|$. If $L(z_0)$ is the pre-image of the segment $\{0, z_0 h'(z_0)\}$, then

$$|zh'(z)| \ge |z_0h'(z_0)| = \int_{L(z_0)} |(zh'(z))'| |dz|$$

$$\ge \int_0^r \frac{(1-t)^2}{(1+t)^4} dt = \frac{3r+r^3}{3(1+r)^3}.$$
(11)

In view of (10) and (11),

$$\frac{3+r^2}{3(1+r)^3} \le |[zf'(z)]'| \le \frac{3+r^2}{3(1-r)^3} \quad (|z|=r).$$

Using again the method that gave us (10) and (11), we obtain

$$\frac{2}{3} \frac{r}{(1+r)^2} + \frac{1}{3}\log(1+r) \le |zf'(z)| \le \frac{2}{3} \frac{r}{(1-r)^2} - \frac{1}{3}\log(1-r).$$

One more application yields

$$\frac{2}{3} \frac{r}{1+r} + \frac{1}{3} \int_0^r \frac{\log(1+t)}{t} dt$$

$$\leq |f(z)| \leq \frac{2}{3} \frac{r}{1-r} - \frac{1}{3} \int_0^r \frac{\log(1-t)}{t} dt.$$

The coefficient bounds give some indication as to the degree of containment of $\mathcal{C}_3 \subset \mathcal{C}_2 \subset \mathcal{C}_1$. Another measure is the following covering theorem.

THEOREM 5. The disk $\mathfrak A$ is mapped onto a domain that contains the disk $|w| < 1 - \log 2 \approx 0.31$ by any $f \in \mathcal C_1$, onto a domain that contains the disk |w| < 0.50 by any $f \in \mathcal C_2$, and onto a domain that contains the disk $|w| < (\pi^2 + 12)/36 \approx 0.61$ by any $f \in \mathcal C_3$.

PROOF. Let $r \to 1^-$ in the lower bound of the distortion results for f in the three classes.

REFERENCES

- 1. L. Brickman, T. H. MacGregor and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91-107.
- 2. L. Brickman, D. J. Hallenbeck, T. H. MacGregor and D. R. Wilken, Convex hulls and extreme points of families of starlike and convex mappings, Trans. Amer. Math. Soc. 185 (1973), 413–428.
 - 3. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
 - 4. K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.

DEPARTMENT OF MATHEMATICS, COLLEGE OF CHARLESTON, CHARLESTON, SOUTH CAROLINA 29401

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506