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EXTREME POINTS OF SUBCLASSES OF
CLOSE-TO-CONVEX FUNCTIONS

H. SILVERMAN! AND D. N. TELAGE

ABSTRACT. We determine coefficient bounds, distortion and covering theo-
rems, and the extreme points for various subclasses of close-to-convex
functions. All results are sharp.

1. Introduction. Let S denote the class of functions of the form f(z) = z +
2% _,a,z" that are analytic and univalent in the unit disk Q. A normalized
function f is said to be close-to-convex if there exists a function

g(2y=bz+--- (Re b, > 0) (1
starlike with respect to the origin for which
Re{zf'/g} >0 (z € Q). ()

It is well known [3] that the close-to-convex functions, denoted by C, are
contained in &.

In this paper we investigate distortion properties, coefficient bounds, and
the extreme points of several subclasses of C. A function f is said to be in €,
if there exists a convex function g of the form (1) such that (2) is satisfied. If
there exists such a g satisfying

Re{[zf']'/g'} >0 (z€Q)
then f is said to be in C,. If
Re{[z[z']]/[28']} >0 (z € ),

then f is said to be in C;. In relating these classes to one another, we will rely
on the following lemma due to Sakaguchi [4].

LEMMA A. Let F(z) =z + - - - be analytic and G(z) = bz + - - - be
analytic and starlike in U with Re b, > 0. If Re F'/G’ > 0 (z € ), then
Re F/G >0(z € ).

Since g convex implies zg’ is starlike, an application of Lemma A shows
that C; C C,. Reapplying Lemma A we see that G, c C,. Further ©, c €
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because convex functions are starlike. We thus have the inclusion relations
GcGce e

Geometrically, a function f is in the family C, if zf’ maps each circle
z = re” (r < 1) onto a simple closed curve whose unit tangent vector never
drops back on itself more than = radians as @ increases. That is, f € G, if and
only if zf* € C. The family ©,, while a proper subclass of the close-to-convex
functions, is not contained in the family of starlike functions. In fact, there
exist functions in ©, that are not starlike. For example, the function

- I;i log(1 — 2)

1=
h(z) = 21 liz

is shown in the next section to be in C,. However for ¢ sufficiently small,
Re(zh'(z)/h(z)) < Owhenz = e?, -¢ < 6 < 0.

2. Extreme points of G, and C,. For a compact family %, we denote the
closed convex hull of § by cl co F and the extreme points of cl co & by
& (cl co %).

THEOREM 1. Let X be the torus {(x,y)|x| =|y| =1}, P be the set of
probability measures on X,

z
1 —y:z

where z € U and |x| = |y| = 1, and let F be the set of functions f, defined by

W@ = [ k@ xy) du(xy),  pEQ.

k(z,x,y)=(1+ x)

+xy log(1 — yz),

Then
clco G =9

and
b(clco C) = {k(z, x,y)|x = —1}.

PrOOF. Our proof will follow along the lines of the proof for & (cl co C),
found in [1]. We first show that clco C, Cc ¥. If f € C,, then p(z) =
zf'(z)/g(z) has positive real part in U for some convex function g. By
Herglotz’ theorem, we can express p(z) as

0)u + p(0) z
pey= [ LD o) ©)

for some a a probability measure on the unit circle I'. In [1] it is shown that
we can express g(z) as

(0)z
80) = [ £00 (o) @

where B is also a probability measure on I'. Since g’(0)p(0) = 1, we use (3), (4)
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and Fubini’s theorem to obtain

5y = [ 2EEQPOL gogu). [ 1 aBe)

1— vz

1 + euz

= do(u) dB (v), 5

fx(l—ﬁz)(l—vz) () 4B (v) ©)

where & = p(0)g’(0) satisfies |¢] = 1. To show that f € ¥ it is sufficient to

show that the kernel functions in (5) belong to %', the set of derivatives of

functions belonging to %. By a theorem in [1], given u and v there is a
probability measure y on I' such that

1 + euz — f 1 + euz

(1 —az)(1—vz) Jr (1 - wz)

Thus we need only show for arbitrary w, |w| = 1, that we can find x, y,

|x| = |¥| = 1, such that

dy(w).

d k(z, x,y) = T+ 2z 1+ ez
T -y (1 - we)
Choosing the unit point mass k(z, x, y) = k(z, ewit, w), we see that cl co C,
c9.
To show that ¥ C cl co C,;, we need only show that {k(z, x, y)} C C, for
|x| = || = 1. Choose a complex number 8 = §(x) so that Re{&(1 + xpz)/(1
—yz)} > 0. Since g(z) = z/8(1 — yz) is convex, we have

zdk(z, x,y)/ dz _ 0(1 + xyz)
g(2) =R —-yz

which shows that {k(z, x, y)} C C,.

Thus the only possible extreme points for C, are {k(z, x, y)}. Taking g = f
in the definition of ©, and noting that convex functions are starlike, we see
that C, contains the convex functions. Since k(z, — 1,y) = — y log(l — yz)
is convex but is not an extreme point of the closed convex hull of convex
functions, it cannot be an extreme point of the larger set cl co C,.

Excluding x, = — 1 from consideration, it suffices to show that for each x,,

Yo |xo| = I)’ol =1,
k(z, X0 yo) = fx k(z, %, ) du(x, y) (©)

is possible only if u is a unit point mass at (x,, y,). Differentiating both sides
of (6) with respect to z, we obtain

l+x0yoz=f I + xyz
'

du(x, y).
(1 - yoz)’ (1 - yz)’ hx.)
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Setting z = y,r and letting r — 17, we have

2
1+ xp= lim ( —"—f—) (1 + xpr) du(x, ). (7
r=17 I\ T = yyor

Since the integrand in (7) is bounded by 2, we may apply the Lebesgue
bounded convergence theorem to obtain

1+ x,= (1 + x) dp(x,y).
I'x{xo}
Setting I'y = T' X {y,} and a = p(Ty), we have 0 < a < 1 and
l+x0=a+f x dp(x, ). (8)
Ty
Since |xo + (1 — a)| = |[rx du(x, )| < a and |x + (1 — a)| > |xo| — (1 —
a) = a, we must have x, = —1 or a = 1. Since x, # —1, it follows that

a = 1. From (8) we have x, = [, x du(x, y), which can hold only if p is a unit
point mass at (xg, ¥o)-

COROLLARY 1. If f(2) =z + Z%_,a,z" € C,, then |a,| <2 — 1/n, with
equality for k(z, 1, — 1).

Proor. We need only consider f € C, of the form k(z, x, y). It is easy to
see that the modulus of the coefficients of k are maximized when x = 1 and
y=—-L

Similarly we have

COROLLARY 2. If f € C,, then

2 —log(1+ 1) < [f() < T2 +log(1 = 1) (el < 1)
and
1-r , 1+r
1+ r)2 <|f (9l < (1- r)2 (2] < n),

with equality for k(z, 1, )atz = *+ r.

We can use similar arguments to determine the extreme points of G,. But
we will use known results for € to give a quicker proof.

THEOREM 2. Let X be the torus {(x,y)| |x| = |y| =1}, P be the set of
probability measures on X,

1 —xy 1+ xy
h(z, x,y) = 2xy z Xy

s - 5 el - »2)

for |x| = |y| = 1, and let F be the set of functions f, defined by
n

K@) =[ b xy) du(xy) (1€ D),
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Then
clco G, =9
and
b(clco &) = {h(z, x,y)|x # y}.
PrROOF. Observe that f € C, if and only if zf’ € C. Thus the operator L

defined by L(f) = [5f(£)/¢ d¢ is a linear homeomorphism on the space of
analytic functions with L(C) = C,. Since

: 1= (x+y)§/2
=) e

the result follows from the results for © proved in [1].

&,

COROLLARY. If f(z) = z + 2%_,a,z" € C,, then |a,| < 1 and

= <@l (<0,
(I:r)2<lf’(2)l<(l_lr)2 (121 < ).

Equality in all cases is obtained for f(z) = z /(1 — z).

REMARKS. The extreme points of both €, and €, are linear combinations
of the extreme points of the convex functions and the functions convex of
order . See [2]. Setting x = — y, we see that the extreme points of convex

functions are contained in those for C,.

3. The class C;. The standard techniques cannot be applied to determine
the extreme points of cl co C; because of the presence of an additional
parameter in the numerator. Nevertheless we still have sharp coefficient
bounds and distortion theorems for the class C;.

THEOREM 3. If f(z) = z + 2%_,a,2" € C,, then |a,| < 2/3 + 1/3n%. This

n=2

result is sharp, with equality for

z _lfz log(1 — {) &,
0

=2
f@&=3 1773 ¢
ProoF. If f € C;, then there exists a convex function g(z) = £¥_,b,z" and
a function of positive real part p(z) = =2_.c,z" with |b,| = |c,| = 1 such that
[z[zf'TT = [zg]'p. Then
o0 o0 00
[ ]] = 3 nigeni= ( $ nzb,,z"")( $ c,,z").
n=1 n=1 n=0

Equating coefficients, we have n’a, = 3% _ k%,c,_,. It is well known that
|b,] < 1and|c,| < 2forn > 1. Hence

nl n(n—1)(2n -1
nla,| <23 k+nt= ( )3( ) +n?
k=1

’
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which simplifies to |a,| < 2 +1/3n2. To show that the extremal function is in
G, we take g(2) = z /(1 — 2).
THEOREM 4. If f € C;, then

2 fr log(l + t)
3 1+r + r 3
2 r 1 (" log(l )
<UEI<3 7553 —F— @ (d<n
b) 1 1 log(l + r)
-_— + —_— ——
3 a+n? 3 r
, 2 1 1 log(1—7)
<If(z)|<§ -3 p 0< |zl < r).

(a-r
Equality holds in all cases for the extremal function of Theorem 3.

PROOF. Setting h = zf’, we may write [zh'] = pg’, where p(z) is a function
of positive real part, g(z) is a starlike function, and |p(0)| = |g’'(0)| = 1. It is
well known that (1 — r)/(1 + r) < |p(2)| < 1 + /(1 — r) and (1 — r)/(1
+rP < |g')| <+ r)/1 - r)for|z| < r. Hence

(1= ry ey
< [2H(2) .
(v O <)

Integrating along the straight line segment from the origin to z = re” in the
right inequality of (9) we obtain

1+ ) _3r+r
31— r)

Now for every r choose 2, |zol = r, such that |h'(zp)| = min, . |h'(2)|. If
L(z,) is the pre-image of the segment {0, zyh'(zy)}, then

[2H @) > e o)l = [ (& @) Il

(I2] < 7). ®)

|2h'(2)] < f (zl=r.  (10)

f (1-1 g=3r*r

. 11
1+ 31+ 7)Y ()
In view of (10) and (11),
3+r2 , ’ 3+r
— < || 2f(2 S— =r
WS @) <55 =
Using again the method that gave us (10) and (11), we obtain
2 r 1 2 r 1
= + ~log(l +r) <|zf'(2)| K § —— — 7 log(1 — r).
el LU CICIES Sk R Uy
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One more application yields

r log(l + ¢
2 r +1f 8( )dt
0

3 1+r 3 t

2 1 r log(l—19)
<@l <3 l—r_Efo__—t dt.
The coefficient bounds give some indication as to the degree of contain-

ment of & C G, C C,. Another measure is the following covering theorem.

THEOREM 5. The disk QU is mapped onto a domain that contains the disk
|w| < 1—1log2~0.31 by any f € C,, onto a domain that contains the disk
|w| < 0.50 by any f € C,, and onto a domain that contains the disk |w| < (m*
+ 12)/36 ~ 0.61 by any f € C;.

PROOF. Let r - 17 in the lower bound of the distortion results for f in the
three classes.
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