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AN INTEGRODIFFERENTIAL EQUATION ASYMPTOTICALLY

OF CONVOLUTION TYPE

KENNETH B. HANNSGEN

Abstract. The resolvent formula is used to study the asymptotic behavior

(/ -» oo) of solution to integrodifferential equations which are close in some

sense to equations of convolution type with integrable resolvents.

I. Introduction. For the problem

x'(t) + f'b(t, s)x(s) ds=f(t) (1.1)
•'o

(' = d/dt,   t £ R+ = [0, oo))  with   initial   condition  x(0) = x0,   we   give

conditions on b which ensure that x E 7/(R+) if / £ 7/(R+), for some

p > 1. We shall assume that, for large t and s, b(t, s) is close to a kernel

a(t - s) of convolution type with resolvent r in L'(R+). We shall also present

some results for related almost linear problems.

Throughout this paper, \\<p\\ and ||<p|| denote respectively the L1 and Lp

norms of the function <p: R+ -»R. A solution of (1.1) is a locally absolutely

continuous function x: R+ —> R such that (1.1) holds almost everywhere.

If b(t, s) = a(t - s) (0 < s < t) with a locally L1 on R+ ("a £

LL'(R+)"), then, for/ E LL\R+),

x(t) = x0r(t) + ( r(t - s)f(s) ds       (0 < t < oo), (1.2)

where r, the (differential) resolvent of a, is the solution of

r'(t)+ f'a(t - s)r(s)ds=0,       r(0) = 1. (1.3)
•'o

(See [1], for example.) Thus x E LP(R+) for all/ E LP(R+) (1 < p < oo) if

r £ L'(R+) n L°°(R+). (1.4)

Assuming (1.4), we employ (1.2) and some simple estimates to derive our

results for (1.1) with the more general kernel b(t, s). Among previous studies

of stability theory for integrodifferential equations, involving the resolvent

formula, we mention those of S. I. Grossman and R. K. Miller [1], [2] and of

Miller [7].
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II. Linear equations. Our first result displays the method in its simplest

form.

Theorem 2.1. Let 1 < p < oo. Let b G LLX(S), where S = {0 < í < t <

oo}, and suppose there exists a G LL'(R+), with resolvent r satisfying (1.4),

such that for each e > 0 there exist T > 0 and c G L'(R+) with \\c\\ < e and

\b(t + T,s + T) - a(t - s)\ < c(t - s)   a.e. in S, (1.5)

ooT      T ~\P

["   [ \b(t+ T,s)\ds    dt< oo. (1.6)
•'0    [•'0

Let f G LP(R+), and let x be a solution of (l.l). Then x G LP(R+).

We discuss and illustrate our results in §V; for example, we show that the

hypotheses of Theorem 2.1 hold with/» = 1 for a large class of a G F'(R+)

with b(t, s) = a(t)ß(s)a(t - s), where a(/)-> 1, /S(/) -* 1 as t -> oo. On the

other hand, with/ = 0, b(t, s) = ait - s) + ß(s)A(t - s) (ß(s) = 0 for s >

1) it can happen that x(oo) = 0 but x G L'(R+). The following positive result

holds, however.

Theorem 2.2. Let x be a solution o/(l.l) with

b(t, s) = a(t)ß(s)A(t - s) + y(s)a(t - s),

where

a G LLX(R+)   with resolvent r G LX(R+), r' G V (R+), (1.7)

0 < A G LLX(R+),    a(t) | 0   (/ f oo),    aA G LX(R+), (1.8)

ß,yGL°°(R + ),    y(t)^\    (t - oo), (1.9)

/GL'(R+). (1.10)

Then x G LX(R+).

Well-known sufficient conditions for (1.7) are discussed in §V.

III. Almost linear equations. The results of §11, together with a perturbation

theorem of S. I. Grossman and R. K. Miller [1, Theorem 4], immediately yield

an existence-stability result for the almost linear equation

x'(t) + f'b(t, s)x(s) ds+ (hx)(t) = f(t),       x(0) = x0>        (3.1)
•'o

where h: Lp —> LP is of higher order with respect to Lp. (Higher order means

m = 0 and ||/i<p, - h<p2\\p = o||<p, - «p^ as \\<px\\p, \\<p2\\p -»0. Solution is

defined as for (1.1).)

Corollary 3.1. Let b satisfy the conditions of Theorem 2.1 [Theorem 2.2],

and let h be of higher order with respect to LP(R+) [L'(R+)]. Then for each

e > 0, there exists a number tj > 0 such that if \x0\ < rj and \\f\\p < tj

lll/ll < i¡], then (3.1) has a unique solution in LP(R+) [F'(R+)] with \\x\\p < e

[11*11. < 4
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Corollary 3.1 holds, of course, for the equation

*'(/) + f^b(t, s)[x(s) + g(x(s))] ds=f(t) (3.2)

for suitable b, g. Using the method of §11, we can establish a related result;

instead of requiring x0 and ||/|| to be small, we assume a priori that

x(t)^>0   así ->oo. (3.3)

Known sufficient conditions for (3.3), involving the signs of b and its partial

derivatives, are discussed in §V below.

Theorem 3.2. Let b and f satisfy the hypotheses of Theorem 2.1 (p = 1) with

a £ L'(R+) or the hypotheses of Theorem 2.2. Let g E C(R) with g(x) = o(x)

(x -» 0). Suppose x is a solution of (3.2), and assume (3.3). Then x E L'(R+).

IV. Proofs. For Theorem 2.1, let 0 < e < l/2||r|| and choose corresponding

F and c. Set y(t) = x(t + T), F(t) = fit + T) (t > 0) and make a change of

variables in (1.1) to obtain

y'(t) + f'a(t - s)y(s) ds

= f'[a(t -s)-b(T+t,T+ s)]y(s) ds+ F, (t),      (4.1)
•'o

with y (0) = x(T), where

|F,(/)| <(  max  \x(r)\)C\b(t + 7, *)| * + |F(0|,

so that F, E 7/(R+). By (1.2),y = rp + £y, where

<p(/) = r(t)x(T) + f'r(t - t)F, (t) dr E 7/(R+),
•'o

£y(0= i'r(t - t) C[a(r - s) - b(r + T, s + T)]y(s)dsdr,

so that £: LP(R+) ^ LP(R+) satisfies

l!£^<tí1WII^<ílNU (4-2)
by (1.5). ForO < p < oo, let

.Vp(') = y{') (° < * < p),    yP(t) = o (p < t < oo).

Clearly y p £ 7/(R+) and

|^p(/)| <|V(/)| +|£yp(0|     (O<i<oo).

By Minkowski's inequality and (4.2),

IWI,<2H,     (o<p<co).

It follows that y E LP(R+) as claimed.
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For Theorem 2.2, choose F so large that

INI II1 - y(T+ OL+H \\M-)<*(t+ •)! \\ß\L<l      («)
T exists, since y -> 1 and for M, N > 0

/• oo rM r oo

I    /i(/)a(A/ + N + t)dt< a(M + N)      A(t)dt+      A(t)a(t) dt;
Jo J0 JM

we obtain (4.3) by choosing first M, then N, sufficiently large, F = M + N.

Now lety(t) = x(t + T) and use (1.2) as above. These results

y = ^+eiv + £27, (4.4)

where

xP(t) = r(t)x(T) + f'r(t - t) /(t + F) - /"^(t + F,í)x(í) ds   dr,
Jo Jo

(4.5)

£i.KO = - /"''•(' - T)(Tß(s + T)a(T + T)A(J - s)y(s)dsdr,        (4.6)
-'0 •'0

£^(0 = f'r(t - t) f[l - y(i + F)]a(r - s)^) A dr. (4.7)
•'O •'0

Now

f r(t - t) f b(r + T, s)x(s) ds dr
•'0 •'0

= f Tx(s)[y(s)4<x(t, s) + ß(s)Ut, ')] ds. (4.8)
•'o

Here, by (1.3),

¡Px(t, s) = f r(t - t>(t + T - s) dr= f *r(t + T - s - a)a(o)
J0 JT-s

= -r'(t + T - s) - f     \(t + T - s - a)a(a) da,
Jo

so for 0 < s < T, M > 0,

rM rT rM+T

/    |*1(f,i)|dr<||r'||+ /   a(o)f        \r(t)\ dt do
Jo Jo Jo

<llr'll + llrll Í a(a)da= K < oo.
•'o

Similarly,

\¡>2(t, s) = f'r(t - r)a(T + T)A (t + T - s) dr,
Jo

roo roo

/    U2(t, s)\ dt <\\r\\      a(r + T)A(t + T- s)dT
Jo Jo

< \\r\\ \\aA\\< oo        (0 < s < T).

da
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Since ß, y £ L°°(0, F), x E C[0, F], we deduce from (1.7), (1.10), (4.5), and

(4.8) that i//£ 7J(R+).

From (4.6),

£i^(0 = - f'y(s)ß(s+ T)('r(< - t)«(t+ T)A(t - s)drds
J0 Js

= - ('y(s)ß(s + T) ['   Sr(a)a(t - s + T + s - a)A(t - s - a) da ds.
Jo Jo

Thus

\\£A<\n\\ß\L\V\\WA(-)<T+ -)\\. (4.9)
Similarly, we see from (4.7) that

IIMI<IHIIi-y(^+-)ILIKII-
We use this together with (4.3), (4.4), (4.9) and the reasoning of the previous

proof to see thaty £ 7J(R+) with ||y|| < 2||t//||. This proves Theorem 2.2.

We prove Theorem 3.2 under the assumptions of Theorem 2.1 with/? = 1

and a E L'(R+); with obvious modifications, the same proof works if instead

b satisfies the hypotheses of Theorem 2.2.

Let e = l/2||r|| and choose corresponding T', c, as for Theorem 2.1. Let

7) = l/4||r||(||a|| + e) and choose T > V so that |g(x(/))| < r\\x(t)\ (t > T);

this is possible, since x(t) -> 0 (t-> oo) and g(x) = o(x) (x -^ 0). Now let

y(t) = x(t + T); as above, we obtain

y = <p + £y + §y,

where <p £ 7,'(R+), (4.2) holds with^ = 1, and

§z(t) = - f'r(t - t) [Tb(j + T,s + T)g(z(s)) ds dr.
Jo Jo

Since |A(t + F, s + F)| < \a(r - i)| + c(t - s), and since |g(y(i))| <

7]\y(s)\ (s > 0),

\§y(t)\ < njr'|r(/ - T)|jf'(|a(T - s)\ +c(r - s))\y(s)\ ds dr.    (4.10)

Thus if we define yp as in the proof of Theorem 2.1, (4.10) holds withyp in

place of y, and

M0| <W)I +1^,(01 +|^p(0|     (o < ' < »)•
Our choice of tj implies that ||Syp|| < ||yp||/4; together with (4.2) (p = 1),

this gives ||yp|| < 4||<p|| (0 < p < oo). This proves Theorem 3.2.

V. Discussion and examples. Sufficient conditions for

/-,/•'£ L'(R') (5.1)

follow from a variant of the Wiener-Lévy theorem, proved by D. F. Shea and

S. Wainger [8] and sharpened by G. S. Jordan and R. L. Wheeler [4].
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According to [4, Theorem 1], (5.1) holds if

a = ax + a2,       a2GLx(R+), (5.2)

ax G LLX(R+) and is nonnegative, nonincreasing,

and convex on (0, oo),

and

£ + á(O*0   (Ref >(U*0), (5.4)

where à is the Laplace transform of a, extended by continuity to (Re f = 0,

f ¥= 0}. (Condition (5.4) always holds when a2 = 0, unless a, has a special

piecewise linear form [3].)

Let

b(t,s) = a(t)ß(s)Ax(t -s) + y(s)A2(t - s), (5.5)

with a, ß, y G L°°(R+). (Kernels of this type have been analyzed by T. R.

Kiffe [5] and J. J. Levin [6].) U y = I, a(t)^>l, ß(t)->\ (/->«), the

hypotheses of Theorem 2.1 hold if a = Ax + A2 satisfies (5.2), (5.3), and (5.4)

with Ax G F'(R+) and A2 G LP(R+). For Theorem 2.2 it suffices to assume

that a, ß, y G LX(R+), y(oo) = 1, a(t) I 1 (/ f oo), Ax >0,cxAxGL], and

that a = A2 = ax satisfies (5.3) and (5.4).

For Theorem 3.2, we must know in advance that x exists on R+ with

x(oo) = 0. According to recent results of M. C. Smith [9], (see [5], [6] for

earlier versions), this will be true if (with k(x) = x + g(x))

f G LX(R+), k G C(R), xk(x) > 0 (x * 0),

|*(x)| < M[ 1 + K(x)] and K(x) > -M(xGR) (5.6)

with M < oo, K(x) —> oo (\x\—> oo)

(here K(x) = f^k(y) ay) and if b and its derivatives satisfy certain sign and

growth conditions. For the kernel b of (5.5), either of the following sets of

hypotheses ((5.7) or (5.8)), together with (5.6), is sufficient for Theorem 3.2:

A2 = 0, A, = a = ax G C ' n Lx (0, oo) and (5.3) holds,        (5.7i)

a G C1 (R+), ß G C(R+), a(t) j 1, 0 < ß(t) T 1 (/ f oo),     (5.7Ü)

A, and A2 belong to C ' (0, oo) and each satisfies (5.3), (5.8Í)

ß and y are continuous and nondecreasing on R+, ß(oo) = y(oo) = 1,    (5.8ii)

a G Cx (R+), a(t) J, 0 (t t oo), aA, G Lx(R+). (5.8iii)

Another kernel for which our results hold (and which was studied in [6]) is

b(t, s) = ax(cx(t)(t - s)),

where a = ax G LX(R+), (5.3) and (5.4) hold, a G C(R+), and a(t) | 1

(/1 oo). Then by the mean value theorem,
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0 < ax(t - s) - b(t + T, s + T)

< -[a(T)-l](t-s)a'x(t-s) = cT(t-s)

and ||cr|| -»0 as F—> oo. Thus b satisfies the hypotheses of Theorem 2.1 with

p = 1. For Theorem 3.2, certain additional assumptions are again needed to

ensure that a solution x exists with x(oo) = 0. See [6], [9].

For an example where x £ 7_'(R+) but x(t) -> 0 as / -* oo, choose a(t) =

e~'/4. Then (1.3) reduces to an ordinary differential equation, and

r(t) = e~'/2(\ + \ t). Let A = a, satisfy (5.3) with ,4(oo) = 0 and ¡%A(t) dt

= oo. Note that for t > 1,

q(t) = f'r(s)A(t - s)ds> ( r(s)A(t - s) ds> 2A(t)/3.
Jo Jo

Thus q > 0 and q £ L'(R+), but .7(00) = 0, since r E Ll and ^(00) = 0.

Now let

/?(*) = /?„       (0<s<l)

= 0       (1 < 5 < 00),

where the positive number ß0 is chosen so that

f'[a(0 + /V (')]*< 5-
•'o

Let b(t, s) = a(t - s) + ß(s)A(t — s), f = 0, and let x be the solution of

(1.1). Clearly j < x(t) < 1 (0 < t < 1), and the change of variables y(t) =

x(t + 1) gives

/(/) + f'a(t - s)y(s) ds= - f\a(t - s) + ß^A^ - s)]x(s) ds
Jo Jo

(t >0),y(0) = x(l).Thusby(1.2),

y(t) = r(t)x(\) - Cx(s) ('rit - r)a(r + 1 - s) dr ds
Jo        Jo

-ßQ( x(s) ('r(t -t)A(t+1- s) dr ds
Jo        Jo

= r(t)x(l)+yx(t)+y2(t).

But, as in the proof of Theorem 2.2,

('r(t - r)a(r + 1 - s) dr
Jo

= -r'(t + 1 - s) - /      r(t + 1 - s - o)a(a) da,
Jo

soy, £ L'(R+) andy,(/) -> 0 (/ -* 00). On the other hand,
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f r(t - t)A(t + 1 - s) dr
Jo

r\-s
= q(t + 1 - s) - \       r(t + 1 - s - a)A(a) da

Jo

= q(t + 1 - s) + 0(te~')

as / —» co, uniformly in 0 < s < 1. Therefore .x(/)—»0 (i —> oo) but x G

L'(R+), as claimed.
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