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REPRESENTING ERGODIC FLOWS AS FLOWS
BUILT UNDER FUNCTIONS WITH FINITE RANGE

ROBIN FELLGETT

Abstract. It is shown, using a result of Rudolph, that any cross-section of

an ergodic flow whose return-time function is bounded and bounded away

from zero is isomorphic to a cross-section whose return-time function has

finite range. A weaker result holds if the boundedness conditions are

removed.

Introduction-Flows with eigenvalues. In this paper we consider an ergodic

flow, [Tt: ü-*ü: t E R), on a Lebesgue probability space. A recurring

problem in ergodic theory is to describe such flows in the simplest possible

way. Such a way involves the construction known as a flow built under a

function or special flow, (T,f). Here F: X ^> X is an automorphism of a

Lebesgue space, / a positive real function on X and ß = {(x, r) E X X R:

0 < r <f(x)}. Full details are described in Rohlin's survey article [1]. Am-

brose [2], see also his paper with Kakutani [3], showed that any ergodic flow

is isomorphic to a special flow ( F, f) where / is bounded and bounded away

from zero. Quite recently Rudolph proved the following, much stronger,

theorem.

Theorem (Rudolph [4]). Given any two positive real numbers, p and q, such

that pq'1 is irrational and an ergodic flow, {F,}, there exists an automorphism

S: Y —> Y and a partition of Y into two sets, A and B, of positive measure such

that {T,} is isomorphic to (S,px¿ + qXß)-

(In fact Rudolph's result says even more, which does not concern us here.)

If we have a special flow (T,f) of the type considered by Ambrose then

Rudolph's result does not tell us anything about the relationship between S

and F except, of course, that they are equivalent in the sense of Kakutani [5].

Below we show, as a consequence of Rudolph's work, that in this case (T,f)

is isomorphic to ( F, g) where g has finite range. In other words without

altering the base transformation it is possible to make the function quite

simple. If/is unbounded then g can be chosen with countable range.

I am grateful to William Parry for discussions about this subject.
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The symbols N, Q, R and C denote the natural, rational, real and complex

numbers respectively. N+ and R+ denote the positive elements of N and R.

Xa denotes the characteristic function of a set A and R(z) the real part of

z G C. exp(r) will be e2*" and log the measurable function; log(exp(r)) = the

fractional part of r. An eigenvalue, a G R, and eigenfunction 9 G L2(Q) for

the flow satisfy 9(Ttw) = exp(at)9(w). Without loss of generality we may

assume this relation holds for every w and every / [1]. Two measurable

functions, / and g, are cohomologous with respect to an automorphism T,

written/— g, if there exists a measurable function h so that/ — g = hT — h

a.e. This is useful as by considering the transformation (x, r) -» TR(hM)(x, r)

one can show:

Theorem (Gurevjc [6]). If f ~ g then (T,f) is isomorphic to (T, g).

We start with a lemma about flows which are not weak mixing.

Lemma 1. Let (T,f) be an ergodic flow with eigenvalue a. Then, if f is

bounded away from zero, there exists an integer N > 0 and a function, g:

X -> R+, such that g(x) G N+(Na)~x and (T, f) is isomorphic to (T,g). Iff is

bounded then so is g.

Proof. We have 9(T,w) = exp(at)9(w). Let H: X->C be defined by

H(x) = 9(x, 0) so H(Tx) = exp(af(x))H(x). \9(w)\ = 1 except on an in-

variant set of measure zero so |//(x)| = 1 a.e. and

M(x) + log H(Tx) = af(x) + log H(x)    a.e.,

where M is a measurable integer valued function, which may be set equal to

one where not already defined. I.e./ + (log H)a~x - (log HT)a~x = Ma~x

a.e.

Since (log H)a~ ' is bounded and/ is bounded away from zero there exists

an integer N > 0 such that:

/V-l N-\

2 JTl + (log H)a~x - (log HTN)a~x =   2 (MTl)a~l > 0.
¿«o i=o

As ^Jq/T' ~ Nf we have/~ g, where

g(x) = Ni\MT'(x))(Nay]
i = 0

has the required properties.

/ = g + hT - h a.e. where if / is bounded h is also bounded. The final

statement follows so the lemma is proved, using Gurevic's theorem.

2. The main result. We now turn to our main result. The reader who is

prepared to draw a few pictures will probably be convinced that it ought to

be true. Lemma 1 provides a technique for overcoming the technicalities and

so provides a straightforward proof of the theorem.
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Theorem. Let (T,f) be an ergodic flow and a and ß any two positive real

numbers such that aß ~ ' is irrational.

(i) If f is bounded away from zero there exists an integer N > 0 and a

function g: X -* R+, such that g(x) E N(Na.y] + N(Nß)-1 a.e. and (T,f) is

isomorphic to (T, g).

(ii) If, in addition, f is bounded then g is also bounded and so has finite range.

(iii) If no boundedness conditions are placed on f then there exists a function

g: X —>R+, such that g(x) E Qa"1 + Qß~l a.e. and (T,f) is isomorphic to

(T,g).

Proof of (i). By Rudolph's theorem (T,f) is isomorphic to (S, a"1^ +

ß 'ab). Denote the second special now by F,: Í2 —> Q. We use some standard

notation for time changes (see [7] for example). Time change {F,} to S,(o>) =

7/>(f,w)(«>)> where

Bni/-'*(/,Ur))-{1,_1       ylA'
{ ß    a,    y E B,

and the limit is taken as / decreases to zero. The now {5,} is the special flow

(S, a~l) and is isomorphic to a special flow (T,fx), where/, is also bounded

away from zero. Since (5, a"1) has an eigenvalue a it is isomorphic, by

Lemma 1, to a special flow (T,f2). Here there exists N > 0 such that

f2(x) EN+(M*)-'a.e.

Set G = Naf2 and consider the tower transformation (see [8] for example)

T — TG, which acts on the space X = {(x, n): x £ X, 0 < n < G(x)}, and

the tower transformation S = SN, which acts on 7= {(y, n): y £ Y, 0 < n

< N}. If t: [0, a~l) -» [0, a-1) is the identity transformation then S X i is the

flow element S,Na)-¡ which is isomorphic, via U: Y X [0, a"1) —> X X

[0, a " ') say, to T X t. 5 is ergodic so i is the factor of S X ¿ corresponding to

the a-algebra of all S X i invariant sets, i is a similar factor of T X t so for

a.e. r E [0, a-1); U(y, r) = (rr(y), r'). Thus we conclude there is an isomor-

phism, r: F-^ X of 5 and F and (S, a'1) = (S, (Na)~l) is isomorphic to

(F, (,/Va)"1) = (F,/2) under the isomorphism (y, r)^>(ry, r). Applying the

inverse time change T,(u>) = Sk{,u)(o>), where t = k(h(t, u), w), we see (F,) is

isomorphic to (f,gx), where gx(x) E {(A^a)"1, (Nß)~l) a.e. Now (T,gx) =

( T, g), where g is of the form stated in the theorem and (i) is proved.

Proof of (ii). Exactly as (i), using the final statement in Lemma 1.

Proof of (iii). Choose any e > 0 so that the set A = {x: f(x) > e} has

positive measure. F is a tower over the induced transformation TA, say

F = (TA)F, and (T,f) = (TA,fx) where/, > e. We have (TA,fx) isomorphic to

(TA, gx), where gx is of the form described in (i). Let, for all x E X,

m(x) = min{m E N: T~m(x) £ A). Now define

g(x) = gx(x)(F(T-^\x))y\

Then (TA, gx) = (T, g) and the theorem is proved.
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Remark. The same technique, using Lemma 1, provides a simple proof of

Kakutani's theorem [5].
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