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ON THE NUMBER OF LATTICE POINTS

IN A COMPACT «DIMENSIONAL POLYHEDRON

MARYSIA TARNOPOLSKA-WEISS

Abstract. An estimate of lattice points, subjected to the orthogonal group

O (n), is obtained for a compact /i-dimensional polyhedron.

Theorem. Suppose P is a compact n-dimensional polyhedron having volume

V. Assume additionally that P contains the origin and that no normal line to dP

is perpendicular to the radial vector. Let G be the orthogonal group O (n), and

let Lg be the image of the integral lattice points under g in G. Let N (x, g) be the

number of points in Lg which intersect the set xP, and define R (x, g) to be the

difference between N(x, g) and the volume of xP. I.e., R(x, g) = N(x, g) —

Vx". Then there is a positive M, such that

(\R(x,g)\dg< M(n,e)(logx)2+s,
JG

where dg is normalized Haar measure on G.

To prove this theorem we shall apply a similar method to the one used in

[1] and in my paper [2]. Again, I would like to thank Professor Burton Randol

for his help and encouragement.

Proof of Theorem. First we would like to estimate the Fourier transform

of the characteristic function of P. In polar coordinates (r, 9), (9 E Sn~x), let

F(r, 9) = JPe2,ri(r9'Y)dY.

By the divergence theorem

F(r'0) = ¿  /   e2^-Y\9,n(Y))dSY
zmir   ¿dp

where n(Y) is the exterior normal to dP. Note that n(Y), as a vectorial

function of Y is constant on the faces of dP. Let us examine the contribution

to this integral of a typical face Pn_, of dP. Now, the contribution from Pn_,

can be written:

CAO)    r
-¿-r'-  )p     e2«^dSY,    with C,(0) = (0, „(F)).

Applying the divergence theorem once more, we find that the last integral is

itself a sum of terms of the form
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CX(9)C2(9)     e ,       ,
XV  }   2y    f     e2^Y) dSY.

(2irir)2       Jp„-z

By applying the divergence theorem n — 1 times and at each stage examining

a typical face of the boundary, we finally conclude that F(r, 9) is a sum of

terms of the form

C(9)       f
-l_i_   /   e2"iir°'Y) dSY,   where |C(0)| < 1,
(2mr)"-1   Jp,

and Px is a line segment in «-space.

Now, let y be the smallest nonnegative angle which the vector (r, 9) makes

with hyperplanes perpendicular to Px. Then by Lemma 2 of [1], there exists

Mx > 0 such that

j e2M*,r)dsY < Mx(\ogry + s[ry(logl/4y)x + S]
-i

and so

-n+l f
J p

e2^r9.Y)dS < AV~"(iogr)1+a[Y(logl/4y)1 + 8]

This implies that there exists a function $(f?) G LX(S"~X) such that

\F(r,9)\ < (log r)x+sr~"^(9). In more detail, $(0) is bounded, except in

bands about those equators whose polar axes are parallel to the one-dimen-

sional simplexes of dP, and is a sum of terms, each of which is singular at the

aforementioned equators. Near such an equator, the singularity of the

corresponding term is of the type y_1(log 1/4y)"1-5, where y is the arc

length from the equator in the perpendicular direction. (That $(f?) is in

LX(S"~X) follows immediately from the estimate on its behavior near the

singularities.)

Now let J(Y) be the characteristic function of P. Then J(Y/x) is the

characteristic function of xP, and the Fourier transform of J(Y/x) is

x"F(xr, 9), if we set Y = (r, 9).

Note that N(x, g) = 2N J(g(N/x)).

Let 8(Y) be a nonnegative C°° function with support in the unit ball and

satisfying jR„8(Y)dVY = 1. Define 8E(Y) = e-"8(Y/e). Now 8C(Y) has

support in the ball | Y\ < e and its integral is also 1.

Next define Je(x, Y) = }R£e(Y - X)J(X/x)dVx and set Nc(x, g) =

2 Jc(x, g(N)). By the Poisson summation formula, this last quantity equals

2 8e(g(N))[x"F(xg(N))], since JE(xY) is C00 function with compact support.

N,(x, g) = Vx" + TÍ(g(N))[x"F(xg(N))]

where 2' means summation over all nonzero integral lattice points.

Now assume that the distance of 9.P from the origin is large. As was

pointed out in [2], this entails no loss of generality. We then find that for
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e > 0,

Ne(x - e,g)< N(x,g) < Ne(x + e, g).

Thus Ne(x - e, g) - Vx" < R(x,g) < Ne(x + e, g) - Vx". By the right-

hand side of the last inequality, we find, substituting our previous expression

for Ne(x + e, g) that

R(x,g) < V((x + e)n - x")

+ 2 '\Ûg(N ))|(* + 0" f[(x + *)\N\, g{~)) -

Now |5e(y)| < M2(\ + e|yv|)_l, so by our estimate for F(r, B),

R(x,g)< V((x + e)" - x")

+ 2 '(1 + e\N\y\log(x + e)|^|)I + >|-*(g(«)).

There is a corresponding inequality going the other way, and we easily

conclude, assuming e small, that

\R(x,g)\ < A#3[jc"-'e + 2'0 + ^\y,(\ogx\N\), + s\Ny^(g(9))].

In particular,

( \R(x,g)\dg
Jr.

<  M, x"~le + 2'(l+e|^l)"1(log^l^l)1 + Vl""f H8(6))dg
JG

Now on the right-hand side, the integral over the group is the same as the

integral over S"~\ which is finite, since $(f?) E L'(5"   '). We conclude that

f \R(x, g)\dg < M4[x"-'£ + S '(1 + e|^|)_I(log x\N\)l + s\N\-"].

Now set e = x1  ". Then

2(logx|A'|)l+5(l + e|V|)-1|Vr"=    2     +    s      .
|Af|<l/e       \N\>l/e

These two sums will be estimated by comparing them with integrals

2     <fX    (logJCT), + ä(l + er)~Xr~nrn~l dr

\N\<l/e     •'I

<fX    (logx/-), + V dr = 0(logx)2+s.

2     <P (log xr)i + e(\ + ery
\N\>\/e      Jx"   '

/-"/•"-' dr

< - f°° (logxr)l + V-2i/r = O(logx) 2 + «
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So  2(log x\N\)x+s(l + e\N\yx\N\-" = 0(\ogx)2+s  which  concludes  the

proof of theorem.
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