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PKLEY-ROY AND THE SOUSLIN LINE

MARY ELLEN RUDIN

Abstract. Necessary and sufficient conditions are given for normality and

metricity of the Pixley-Roy space over a subset of the Souslin line.

The purpose of this paper is to answer a question of E. Parker: for which

subsets X of a Souslin [1] line S is the Pixley-Roy [2] space PXR over X

normall for which is it met riel

Without loss of generality, we assume that 5 is compact, connected, and

without nontrivial separable subintervals. Then: S = U aSw Ka where each

Ka is a Cantor set and Ka c Kß for all a < ß. Let

Da = lx- [J  Kß) n cl( U   Kfin x).
\ ß<a I \ß<a '

Consider statements:

(A) {a G wx\Da 7^0} is not stationary in wx.

(B) P(xnK )R 's metric for all a G wx.

(C) P^nKjR 's normal for all a G wx.

We prove:

(I) PXR is metric if and only if both (A) and (B) hold.

(II) PXR is normal if and only if both (A) and (C) hold.

If W is a subset of a Cantor set K, we know the following:

(D) [2] PWR is metric if and only if W is countable.

(E) [Theorem 4 of this paper] PXVR is normal if and only if W" is a Q-setx

for all n G N.

(F) [4] It is consistent with ZFC that both there exists a Souslin line and PWR

is normal only if it is also metric.

(G) [3] // is consistent with ZFC that there exist both a Souslin line and a

W c K such that PWR is normal but not metric.

Using (D) and (E), (I) and (II) become

(I') PXR is metric if and only if (A) holds and X n Ka is countable for all a.

(IP) PXR is normal if and only if (A) holds and (X n KJ" is a Q-set for all

n G N and a G wx.

PXR is always a Moore space [2]; thus PXR is a normal nonmetrizable

Moore space if and only if (A) and (C) hold but (B) does not. By (F) and (G)
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it is independent of ZFC whether there is an X such that PXR is a normal

nonmetrizable Moore space even if one requires that X — Ka ^0 for all

a E co,.

My reasons for bothering with all of this are:

(1) I had expected PXR to be metric only if X were countable (and PXR to

be normal only if X were contained in a Cantor set).

(2) I think the following problem is important and I do not know how to

solve it. Suppose that W is a Q-set (contained in a Cantor set). Is W2 (or W")

a Q-setl It is certainly consistent with ZFC that there exist a Q-set and that

the answer be yes for all Q-sets W. I conjecture that it is also consistent that

the answer be no.

In proving Theorems 2 and 3 we do not use the fact that S has no

uncountable family of disjoint open intervals; i.e. S could be any linear space

with the structure described in paragraph two; i.e. S could be an Aronszajn

line.

The Pixley-Roy space PXR over a space X is the set of all finite subsets of

A\ If F E PXR and U is open in X then {G E PXR\F c G c U) is a basic

open set in PXR. Throughout the paper we assume that X c S and S, Ka,

and Da are as defined in the second paragraph. Conditions (B) and (C) are

obviously necessary for (I) and (II) respectively; we begin by proving that (A)

is necessary:

Theorem 1. 7/ (a £ co,|TJ)a =^0} is stationary in «,, then PXR is not normal.

Proof. Using < here for the order in S, let

La = \x E Da\x E cl lyEXn[ (J   A^IjKjcU

and

/l, = Lez>a|*eclj;,ejrn( U &ß)\y > *   •

Since Da = La u Ra, we assume without loss of generality that {a E co,|La

7^0} is stationary in co,.

Let Í be the set of all nontrivial open subintervals of S. There is an S0 E í

such that, for all 7 £ i with 7 c SQ, {a E co,|La n 7 =^0} is stationary in

co,. To see this let ÍÍ * be a maximal family of disjoint members of Í such that

for each 7 E Í * there is a closed unbounded subset ü¡ of co, with La n 7 =0

for all a E Q,. If there is an S0 E í contained in S - U (5 *), then 50 clearly

has the desired properties. Otherwise U (5 *) is dense in S and hence, since i

is countable, S - U (5 *) is separable. So there is a ß with (S - \J0 *)) C

Kß. But then {a£w1|La7,t0}is not stationary since it does not meet the

closed unbounded set [a > ß\a £ n/eg« ß/}.

By induction, for each a E co, choose ôa £ co, andj'a E Ls^ n S0 in such a
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way that 8a > sup^l/? < a}. Let Y = {ya\a G w,}, Z = X - Y, and Y*

and Z* be the set of all singletons from Y and Z, respectively. Since Y* and

Z* are closed and disjoint in PXR, assuming that PXR is normal there are

disjoint open sets U and V in PXR such that Y* c U and Z* c V.

For each a G wx, since va G Ds^ and 8a > sup(5^| ß < a),ya G cl{yB\ ß <

a). Thus there is a 7a G 5 such that ya is the left end point of Ja and

J<x n {Vys|y8 < a} = 0. Since {ya} G Y* c U, Ja can be chosen in such a

way that the unordered pair {ya, x} G U for all x G (Ja n X).

Using the same type of argument used in finding S0, we can find an

Sx c S0 with Sx G i such that if / c Sx and / G 5, then // n Y i=0.

For each a G wx choose a maximal family 5a of disjoint members of

{Jß\ß > a}. In wx choose a* > sup{8ß\Jß G ía). Observe that if x G Sx n

Ly for some y > a*, then there is a 7 G fa with x G J. To see this suppose

the contrary. Since x G Dy and y > a*, there is an / G í such that / c Sx, x

is the left end point of /, and / n {yß\ß < <**} =0. Since I c Sx, there is a

P G y, with vp G /. Suppose that /? < a*. If vp < yß in 5, then ^ G /p by

definition; thus Jpc\ Jß =0 since^ is the left end point of Jß. If vp > ^ in

S, then, since yB & I, yß < x; hence, since x G Jß, Jp <~) Jß =0- Thus

•^p H ^ =0 for all ß < a*. But this contradicts the maximality of fa.

Choose an unbounded subset r of u, such that a < y G T implies that

a* < y; let T* be the set of all limits of T in wx. Since T* is closed and

unbounded and Sx c S0, there is an x G Sx n Ly for some y G T*. Choose

Yi < 72 < • • • m T having y as a limit. By the above paragraph, for each

n G N there is a ßn such that x G /ft and 7^ G Jy . Since y is the limit of

{aß }» {x} G Z* G V. Also x is a limit point in S of {^ \n G N). So there is

an n such that {^ , x} G V. But {^ , x) G U by the definition of Jß . This

contradicts U C\ V =0.

Theorem 2. //(A) a/jrf (B) /¡oW, //¡evz PXR is metric.

Proof. Let if be the set of all subsets of X of the form {A'}or{xGAr|p<

x] or {x G X\x < q) or (x G X\p < x < q) for some p and/or q in

X n S. These sets form a basis for the topology of X. Since each Ka is a

Cantor set, for each a there is a countable subset 5a of 3 which is an open

basis for (Ka n X) in A\ Let Ca be the set of all "end points" (p's and <?'s in

the description above) of members of 50. For each a G wx, choose a* G wx so

that Ca c cl U ß<a. (X n Kß).

By (A), there is a closed unbounded subset F of w, such that for all a G T,

if x 6 I - Uß<aKß, then x G c\(X n (U^<a Kß)). For each a G T, let

ra = {ß G ío,|if a < y G T, then a < ß < y}. We assume that T was

chosen so that ß G Ta implies that ß* G (J y<a Tr

For a G T, let Xa = U^r,,^ n Kß) - Uß<aKß. Index (/ G

U^er §ß\I n ^ =0 for y < a} = {/an|n G A7}. This is an open basis for

XamX.
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If / E N and a ET, let Jix = D {Ian\n < i and x E Ian) (one can let

Jix = X if x £ Ian for any n < /). For F £ PXR define i//f = [G E PXR\F

CG c Uxe/-/,x}; {UiF\i £ A7} is an open basis for F in PXR. For /' E A7

define

F,.    F E F^F
If x £ F n A^, then x E 70„ for some n < i     1

If x E F, z £ F, and x ^ z, then /,x n 7,z =0 j

By (B), P(X nK)R is metric and hence, by (D), X n Ka is countable for all

a E co,. Thus we can index Xa = {xan\n EN). For i E N, define:

P* = ¡F E F,|If xa„ £ F and xak E F and A: < n, then xa¿ £ U  «4   ■
v :Ef        >

We prove that if F E P? and G £ F/ /or some j > i and UiF n UJG ̂0,

f/ie« F c G. Since for any G E PXR there is a/ > /' with G E P* and there

are at most finitely many F c G, this proves that [UiF\F E P*} is locally

finite for a fixed /'. The existence of this a-locally finite base implies that PXR

is metric and proves Theorem 2.

Suppose on the contrary that there is an 77 £ UiF n UjG and an x £ F —

G. Since x E F c H E UJG, there is a _y E G such that x E Jjy. Since

y E G c H E UjF, there is a z £ F such that _y E Jiz. Since x and z belong

to F E F„ x £ y,z unless x = z.

There are a, ß and y in co, such that z E Xa,y E Xß and x E Xy.

Observe that a < ß < y. For suppose a > ß. Since T1Z c 7^ for some n

and 7an n Xß =0 for all ß < a, this contradicts fE^n /,z. Similarly

/3< y.
Suppose a < ß. Then a < y so x ^ z. Since x $ y,z and>> £ Jiz, there is

an end point p of some Ian with /7 between x and y in 5; by definition

p E cl(UÄ<a.J*J5). Since {x,y} <Z Jjy and since JJy is an interval,/? E JJy. But

this is a contradiction since a* < ß and .F, n (U s<b^s) =<Z>-

So we must have a = ß. Recall that 7,2 = n {7an|« < /' and z £ Ian).

Thus, since _y E 7,z n ^ and j > i, JJy c 7,z. Since x E Jjy, x E Jiz. Thus

x = z.

So a = ß = y and x = z. Since x = xat and y = xah for some h and A: in

A and x =£ y, one of A and k is smaller and either x £ ^ or^ £ Jix; but this

contradicts x E Jjy,y E Jiz, and x = z.

Theorem 3. 7/(A) and (C) /W<7 then PXR is normal.

Proof. Assuming (A) we define 4, 9a) Ca, a*, T, Ta, Xa, /„„, Jix, UiF, and F,

exactly as in the proof of Theorem 2.

Now suppose that Y and Z are disjoint closed subsets of PXR; we must

find disjoint open sets separating Y and Z and thus prove that PXR is

normal.

For F E PXR, let </>(F) = {« E co,|F f) Xa ¥= $}. Let A = {<</>, 7, 7>|3F

E F^T? such that $ = <b(F) and J = U xSf>/,x}. For <<f>, 7, i> E A, define
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¿W = Í F G p¡\* = *C)> J ' U /* l
^ I6f J

Define ï'<^,,> = {F G P<<jv/,,;>|Z n UiP =0}. Then interchanging Y and Z

define Z<^/jí>.

Observe   that   T<<f>^;>   and   P^jjy   — ^<^,,->   are   disjoint   subsets   of

P(XnK^„)R as are z<<m,/> and ^<<m,0 - z<<m,/>- ̂̂  a11 of these sets are

closed in PXR since any F belonging to any of them has exactly one member

in each of the disjoint {Jix\x G F); and for a fixed <b and /, the possibilities

for {Jix\x G F) are finite.

Hence, by (C) there is a function k<l>r/Jy = k: PXR —> N such that Uk(F)F n

Uk(G)c =0 whenever F G Y<í>y/> and G G P<<tJJ> - Y<<Mil> or whenever

G G Z<(fcW> and F G P<i>Jjy - Z<^>.
There is also a function i: PXR -» N such that, if <¡>(F) = <f>, i (F) = i, and

UxeíJ1Jt = /, then F G Y^> if F G Y, and F G Z«^ if F G Z.

Observe that <p and /' are finite and that f or 9 c <í> and « < /' there are only

finitely many K with <f?, K, n) G A. So we can also define/: PXR —> N such

that/(F) > i(F) and for all « < i(F), 9 C <i>(F), G c F, and <0, AT, n> G A,

m > h0,K,n¿G).
Claim. Uf<eyUj(F)f and Ucszl/(G)G are disjoint open sets separating Y

and Z.

Suppose on the contrary that there are F G Y, G G Z, and H G UJ(r)F n

Uj(G)G- Without loss of generality we assume that i = i(F) < /(G) < j(G) =

/'■
Since / < j, using the proof for Theorem 2, if x G F — G and x G Xa,

there is ayx G Xa n G such that x G 7^ andv G 7,x. Note that Jix = Jiyx.

Let </> = <b(F) and 7 = UxeFJix. Then F G y<<(v/,> by the definition of

i = i(F).

Let G' = (F n G) U {yx\x G F - G). Clearly <¿>(F) = <KG') C <b(G), J

= Uyec-4,   and   G' GG cH <zJ.   So   G G t//c.   and   G' G P«,^ -

Let H' = F u G' and Â: = fc<<Mil>.

Since ¿(F) </(F) we have F G H' c H G Uj(F)F G Uk(F)F and thus H'

^   Uk(F)F-

Since <í> c <XG) and / < /(G), A-(G') </(G). Also G' G H' G UJ(G)G- by

the definition of yx and G'. So H' G Uk(C.)C.. But this contradicts t/t(f)ir Pi

^(COc =0 for F G Y^i} and G' G P^ - Y^.

Theorem 4. // W is a subset of a Cantor set K, then PWR is normal if and

only if W" is a Q-set for all n G N.

Proof. Let K = {/: N^2).

If F G PWR and / G N, let JiF = {/ \ i\f G F) and let UiF = {G G

PWR\F c G and JiG c y,F}. Let Wn = (F G P^/?| |F| = «} and, for F G

H7,,, let F* G W" be the natural ordering of F: that is/ < g in F if there is a
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k such taht /(/) = g(i) for all i < k but f(k) < g(k). PWR is normal if for

every pair Y and Z of disjoint closed sets there is an /": PWR -» N such that

Ui(F)F n Ui(G)G =0 for all F £ Y and GEZ.

If S = </,•■ • /„> £ W and i E V, define t/s = {<g,g2 • • • g„> E

W\gk \ i = fk l ' for ail k < n}. Both Y and W" - Y are Ga-sets in W if

and only if there is a function i: W" ̂ > N such that, if S E Y and T E W

— F, then either S £ t7/(r)7. or F E {/(S)S.

If 5 = </,-• • /„> E W" there is 5' = {/ E S) E Wm for some m < n.

Define H^ = {S E W"\S' E Wm) and let ts: n -^ m be the unique function

such that fj is the ts(j)^ term of (S')*. Let % = (f: « -> w} and, for

f £ %, let »X = [S E W^\ts = ?}. Observe that each / E % induces a

one-to-one correspondence between W^t and JFm (taking 5 to S'). Choose

ks E N such that/^ g in 5, then/ f /cs ̂  g { ks. Observe:

If S and T belong to W^„ i > ks, andj > kT, then (S' u F')

£ (UiS. n Ujr) if and only if T E UiS and S E UJT. (*)

First we prove that, If PWR is normal and Y c W, then Y is a Gs-set in

IV.

Suppose that m < n and / E ^"m. It is known that PWR is normal only if it

is hereditarily normal. Thus the open subset VJr>mWr of P^T? is normal.

Since Wm is closed in Ur<mrVr and discrete in itself, we can find disjoint

open sets in PWR separating Y* and Wm — Y*. Since t induces a one-to-one

correspondence between Wm and W^t, there is i: W^t -* N such that

Uns)s-n C//(r)7-=0

if S E Y n W¿, and F E W^t - Y. Since if S £ W, S belongs to W^, for

exactly one m and t, i: W" -^ N is well defined; choose i(S) > ks for all

S E W.

This / testifies to Y being a Gs-set for suppose there were an S =

</„...,/„>£ (F n Ui(T)T) and F = <g„ . . . , g„> E (i//(S)S - F). Assume

without loss of generality that i(S) < i(T). Since S E UKT)T and A:s < /(S)

< /(F),/ f /(F) = gj \ i(T) for all/ < «. Thus if S E H™, F £ W¿ for the

same w and /. But this contradicts (*) since C,(S)5. n U^nr = &

We now prove that, If W is a Q-set for all n £ N, then PWR is normal.

Suppose that Y and Z are disjoint closed subsets of PWR. For each m E N,

let Jm = {/ r H/ e *) and for ̂ C/M let

Fy = {F E F^F| |/| = |F|, J = JmF, and (7mf n Z =0).

Let it = |/|. Since {F*|F E F,} and W - {F*\F E Yj) are both G^sets in

W, and, if G E (Wn - Yj), then G* E (W" - {F*|F E YJS), there is ajJY

or /: IFn -> N such that, if F £ Fy and G EW„- Yj, then either F* g

^(OG* or G* g UjiF)F*. Thus, by (*),

(F u G) g uAF)Fn uJ(G)G.

Interchanging Y and Z define Zy and/,z.
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For each F G PWR choose m(F) G N such that for some J c Jm(F),

F G Yj if F G Y, F G Zj if F G Z, and F G (Yj n Z,) if F G PWR - (Y

U Z). Finally define

i(F) = lub{/,y(G) +jJZ(G) + m(G)\G c F

andy c Jm for some m < m(G)}.

This / witnesses a separation of Y and Z. For suppose there were F G Y,

G G Z, and ./Y G (Ui(F)F n Ui(C)G). Without loss of generality assume i(F)

< i(G).
Since F g H G Ui(C)G, Ji(G)F G Ji(G)G. Since m(F) < i(F) < i(G) and

1^1 = J~m(.F)F\> \F\ — I-^xofI an<Í> for each/ G F, there is a g^ G G such that

g, f /(G) = / r ¡(G). Let G' = {gf\f G F). Then |G'| = \F\, Ji(G)F = //(G)G,,

and (G' u F) G (Ui(F)F n ^(G)G,). Since G cH G Ui(F)F, Ji(F)G G Ji(F)F

and thus G G Ui(F)G..

Case (1) m(F) < m(G'). Let / = /m(F). Then, by the definition of m,

F G Yj. However G' G (W^ - Yj) since m(F) < i(F) and G G (t/,(F)G- n

Z). Thus, by the definition of /, i(F) > jJY(F) and, since m(F) < m(G'),

i(G) > jjy(G'). So, by the definition of jJY, (G' u F) G (Ui{F)F n i/,(G)G-)

which is a contradiction.

Coje (2). m(G')<m(F). Since m(F) < i(F), G G (U^^. r\ Z); so

(i/m(G)G. n Z) 7^0. Thus, by the definition of m, G' G Z. Let J = Jm{G)G.

Then G' G Zy and F G (H/|y| - Zy). Also /(G) > y/z(G') and, since w(G')

< m(F),  i(F)>jJZ(F).  Again  (C'uflíf^n £/í(C)c')  gives  us  a

contradiction.
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