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PIXLEY-ROY AND THE SOUSLIN LINE
MARY ELLEN RUDIN

ABSTRACT. Necessary and sufficient conditions are given for normality and
metricity of the Pixley-Roy space over a subset of the Souslin line.

The purpose of this paper is to answer a question of E. Parker: for which
subsets X of a Souslin [1] line S is the Pixley-Roy (2] space PyR over X
normal? for which is it metric?

Without loss of generality, we assume that S is compact, connected, and
without nontrivial separable subintervals. Then: S = U ,,, K, where each
K, is a Cantor set and K, C K for all a < B. Let

Da=(X— U KB)ncl( U K,gnx).
B<a B<a

Consider statements:

(A) {a € w,|D, #D} is not stationary in w,.

(B) Pix xR is metric for all a € w,.

(©) Px k)R is normal for all a € w,.
We prove:

(I) Py R is metric if and only if both (A) and (B) hold.

(I1) Py R is normal if and only if both (A) and (C) hold.
If W is a subset of a Cantor set X, we know the following:

(D) [2] Py R is metric if and only if W is countable.

(E) [Theorem 4 of this paper] P, R is normal if and only if W" is a Q-set'
foralln € N.

(F) [4] 1t is consistent with ZFC that both there exists a Souslin line and Py R
is normal only if it is also metric.

(G) [3] It is consistent with ZFC that there exist both a Souslin line and a
W C K such that Py, R is normal but not metric.

Using (D) and (E), (I) and (II) become

(I') Py R is metric if and only if (A) holds and X N K, is countable for all a.

(II') Py R is normal if and only if (A) holds and (X N K,)" is a Q-set for all
n € Nand a € w,.

PyR is always a Moore space [2]; thus P, R is a normal nonmetrizable
Moore space if and only if (A) and (C) hold but (B) does not. By (F) and (G)
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it is independent of ZFC whether there is an X such that PyR is a normal
nonmetrizable Moore space even if one requires that X — K, < for all
a € wp.

My reasons for bothering with all of this are:

(1) I had expected Py R to be metric only if X were countable (and Py R to
be normal only if X were contained in a Cantor set).

(2) I think the following problem is important and I do not know how to
solve it. Suppose that W is a Q-set (contained in a Cantor set). Is W?* (or W™)
a Q-set? It is certainly consistent with ZFC that there exist a O-set and that
the answer be yes for all Q-sets W. I conjecture that it is also consistent that
the answer be no.

In proving Theorems 2 and 3 we do not use the fact that S has no
uncountable family of disjoint open intervals; i.e. S could be any linear space
with the structure described in paragraph two; i.e. S could be an Aronszajn
line.

The Pixley-Roy space Py R over a space X is the set of all finite subsets of
X.If F € PyR and Uis open in X then {G € PyR|F C G C U} is a basic
open set in Py R. Throughout the paper we assume that X C S and S, K,
and D, are as defined in the second paragraph. Conditions (B) and (C) are
obviously necessary for (I) and (II) respectively; we begin by proving that (A)
is necessary:

THEOREM 1. If {a € w,|D, #J)} is stationary in w,, then PyR is not normal.

PRroOF. Using < here for the order in S, let

La={xEDa|xEcl[y€Xﬂ(U KB)|y<x}}

B<a

and

R, ={x€Da|x€cl{y EXnN ( U KB)]y >x]}.
B<a
Since D, = L, U R,, we assume without loss of generality that {a € w,|L,
#J} is stationary in w,.

Let 9 be the set of all nontrivial open subintervals of S. There is an S, € 9
such that, for all 7 € § with I C S, {a € w)|L, N I #O} is stationary in
w,. To see this let §* be a maximal family of disjoint members of  such that
for each I € 9* there is a closed unbounded subset @, of w, with L, N [ =&
for all « € Q,. If there is an S, € $ contained in S — U (9*), then S|, clearly
has the desired properties. Otherwise U (9 *) is dense in S and hence, since J
is countable, S — U (9*) is separable. So there is a 8 with (S — U($*) C
K. But then {a € w||L, #J} is not stationary since it does not meet the
closed unbounded set {a > Bla € N, cq. ;).

By induction, for each a € w, choose §, € w, and y, € Ls N S, in such a
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way that §, > sup{A4|B8 < a}. Let Y ={y,la €Ew},Z=X—Y, and Y*
and Z* be the set of all singletons from Y and Z, respectively. Since Y* and
Z* are closed and disjoint in Py R, assuming that PyR is normal there are
disjoint open sets U and V in Py R such that Y* Cc Uand Z* C V.

For each « € wy, since y, € Ds and §, > sup{8| B < a},y, & cl{yg| B <
a}. Thus there is a J, € § such that y, is the left end point of J, and
J, N {yglB <a} =@ Since {y,} € Y* C U, J, can be chosen in such a
way that the unordered pair { y,, x} € Uforall x € (J, N X).

Using the same type of argument used in finding S, we can find an
S, C Sywith S, € 9 suchthatif / ¢ S;andI € 9,thenI N Y #J.

For each a € w, choose a maximal family §, of disjoint members of
{Js| B > a}. In w, choose a* > sup{8;|lJ; € 9,}. Observe that if x € §; N
L, for some y > a*, then there is a J € §, with x € J. To see this suppose
the contrary. Since x € D, and y > a*, thereisan/ € Y suchthat C S, x
is the left end point of I, and I N {y4| B < a*} =J. Since I C S, there is a
p € @, with y, € I. Suppose that B < a*. If y, < yz in S, then yz & J, by
definition; thus J, N J; = since yj is the left end point of J4. If y, > yg in
S, then, since y; & I, yz < x; hence, since x & Jg, J, N Jy =&. Thus
J, N Jg =@ for all B < a*. But this contradicts the maximality of 4.

Choose an unbounded subset T' of w, such that « < y €T implies that
a* < y; let T* be the set of all limits of I' in w,. Since I'* is closed and
unbounded and S; C Sy, there is an x € S, N L, for some y € I'*. Choose
¥1 < ¥2 < ... in T having y as a limit. By the above paragraph, for each
n € N there is a 8, such that x € J; and J; € ¢, . Since v is the limit of
{85 ), {x} € Z* C V. Also x is a limit point in S of { yz |n € N}. So there is
an n such that {yg, x} € V. But {y,, x} € U by the definition of J, . This
contradicts U N V =d.

THEOREM 2. If (A) and (B) hold, then Py R is metric.

PROOF. Let § be the set of all subsets of X of the form {X} or {x € X|p <
x} or {x € X|x < g} or {x € X|p < x < g} for some p and/or g in
X N S. These sets form a basis for the topology of X. Since each K, is a
Cantor set, for each a there is a countable subset §, of § which is an open
basis for (K, N X) in X. Let C, be the set of all “end points” (p’s and ¢’s in
the description above) of members of J,. For each a € w,, choose a* € w, s0
that C, C cl U gqe (X N Kp).

By (A), there is a closed unbounded subset T of w, such that for all « € T,
if x € X — Upg,Kp then x & cl(X N (U g, Kp)). For each a €T, let
[,={B €wlif a<y€ET, then a < B <vy}. We assume that I' was
chosen so that 8 € T', implies that 8* € U, [,.

For a« €T, let X, = Uger, (X N Kp) — Upg K Index {I €
Uger, %!l N X, =3 for y < a} = (I,,|n € N}. This is an open basis for
X,in X.
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If ieNand a €T, let J, = N {I,|n <i and x € I} (one can let
J,=Xif x & I, for any n < i). For F € PyR define Uy = {G € PxR|F
C G C UyerJi}; {Ugli € N} is an open basis for F in PyR. Fori € N
define

Ifxe FNn X,,thenx € I, forsomen < i
P,.{FEPXR X EIN Ao thenx € L }

Ifx € F,z € F,and x # z, thenJ, N J, =T |’

By (B), P(x xR is metric and hence, by (D), X N K, is countable for all
a € w,. Thus we can index X, = {x,,|n € N}. Fori € N, define:

Pr = [F € P|If x,, € Fand x,, & Fand k < n, thenx,, & U J, }

zEF

We prove that if F € P} and G € P} for some j > i and Uy N U #9,
then F C G. Since for any G € PyR there is aj > i with G € P* and there
are at most finitely many F C G, this proves that {U|F € P}} is locally
finite for a fixed i. The existence of this o-locally finite base implies that P, R
is metric and proves Theorem 2.

Suppose on the contrary that there is an H € Uz N Ujg and an x € F —
G. Since x € F C H € Ug, there is a y € G such that x € J;,. Since
Y € G C H € Uy, there is a z € F such that y € J,. Since x and z belong
toF € P, x & J, unless x = z.

There are a, B and v in w, such that z € X,,y € Xgand x € X,.

Observe that a < B < y. For suppose a > 8. Since J,, C I, for some n
and I,, N Xz =3 for all B < a, this contradicts y € Xz N J;,. Similarly
B<y.

Suppose a < B. Then a < y so x # z. Since x & J,, and y € J,,, there is
an end point p of some I, with p between x and y in §; by definition
P € cl(U 5¢,+X;). Since {x,y} C J;, and since J;, is an interval, p € J;,. But
this is a contradiction since a* < B and J;, N (U ;.3X;) =9.

So we must have a = B. Recall that J, = N{[,|n < i and z € I,}.
Thus, since y € J, N X, and j > i, J;, C J,,. Since x € J;,, x € J;,. Thus
x =z

Soa = B =y and x = z. Since x = x,;, and y = x,, for some 4 and k in
N and x # y, one of 4 and k is smaller and either x & J,, ory & J,,; but this
contradicts x € Jy,y €J,,and x = 2.

THEOREM 3. If (A) and (C) hold then Py R is normal.

PROOF. Assuming (A) we define 9, 9., C,, a*, I, T, X, L., /.,
exactly as in the proof of Theorem 2.

Now suppose that Y and Z are disjoint closed subsets of PyR; we must
find disjoint open sets separating Y and Z and thus prove that P,R is
normal.

For F € PyR, let ¢(F) = {a € w,|F N X, # ¢}. Let A= {{¢,J, ID|AF
€ PyRsuchthat¢ = ¢(F)andJ = U, o/, ). For (¢, J, i) € A, define

Ui, and P,
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Pso={F € Plo=o(F).s = U 4.}
xEF
Define Y, ;s = {F € Py ;5|Z N Uy =3}. Then interchanging Y and Z
define Z, ; .

Observe that Y., and P, — Y, are disjoint subsets of
Pixnk,, R as are Z, and P, ;s — Z, 5 Also all of these sets are
closed in Py R since any F belonging to any of them has exactly one member
in each of the disjoint {J,,|x € F}; and for a fixed ¢ and i, the possibilities
for {J,|x € F} are finite.

Hence, by (C) there is a function k,, ;;, = k: PyR — N such that Uy g)r N
Uiy =9 whenever FE Y, and G € Py ;s — Y, Or whenever
GEZysnandF € Py i~ Zigyy

There is also a function i: PyR — N such that, if ¢(F) = ¢, i(F) = i, and
Urerix=J, then FEY, if FEY, and FEZ,;, if FEZ
Observe that ¢ and i are finite and that for # C ¢ and n < i there are only
finitely many K with {0, K, n) € A. So we can also define j: PyR — N such
that j(F) > i(F) and for all n < i(F), 8 C ¢(F), G C F, and {6, K, n) € A,
J(F) > kg kn(G)

CLAM. U reyUpyr and U ez UGy are disjoint open sets separating Y
and Z.

Suppose on the contrary that there are F € Y, G € Z, and H € Uypr N
Ui - Without loss of generality we assume that i = i(F) < i(G) < j(G) =
J-

Since i < j, using the proof for Theorem 2, if x € F — G and x € X,
thereisay, € X, N G such that x € J;, andy € J,,. Note thatJ,, = J,, .

Let ¢ = ¢(F) and J = U,cpJ;,- Then F € Y, ,;,, by the definition of
i = i(F).

Let G’ =(F N G)U {y,|x € F— G}. Clearly ¢(F) = §G") C ¢(G), J
= U,e¢/y» and G'CGCHCJ. So G € Ug and G € Py, —
Yosi

Let H'=FuU G'and k = kg, ;.

Since k(F) < j(F) we have F C H' C H € Uz C Uy(r)r and thus H’
€ Uwryr-

Since ¢ C ¢(G) and i < i(G), k(G') < j(G). Also G’ C H' € Uy by
the definition of y, and G'. So H' € U,/ But this contradicts Uyr)r N
Uwgrg =B for F € Y, ;sand G' € Py ;i — Yy

THEOREM 4. If W is a subset of a Cantor set K, then Py, R is normal if and
only if W" is a Q-set foralln € N.

PrROOF. Let K = { f: N - 2}.

If FEP,R and i €N, let J.={flilf € F} and let Up={G €
PyR|F C G and Jg C J;p}. Let W, = (F € PyR| |F| = n} and, for F €
W,, let F* € W" be the natural ordering of F: thatis f < g in F if there is a



PIXLEY-ROY AND THE SOUSLIN LINE 133

k such taht f(i) = g(i) for all i < k but f(k) < g(k). Py R is normal if for
every pair Y and Z of disjoint closed sets there is an i: Py R — N such that
Uiryr N Uygyg =B forall F € Yand G € Z.

If S=(f,---f>EW" and i €N, define Ugz={{g,8, " 8> E
W" gl i=f|iforall k < n}. Both Y and W" — Y are Gg-sets in W" if
and only if there is a function i: W" - N such that,if S € Yand T € W"
— Y, theneither S & Upyror T & Uys)s.

If S={f,---f)E W thereis "= {f € S} € W, for some m < n.
Define W, = {S € W"|S’ € W,,} and let t5: n — m be the unique function
such that f is the t5(j)th term of (S)*. Let I}, = {#: n— m} and, for
te J5, let W), ={S € W}|ts = t}. Observe that each r € ¥, induces a
one-to-one correspondence between W, and W,, (taking S to S’). Choose
kg € N such that f# gin S, then f | kg # g | kg. Observe:

If S and T belong to W,,,, i > kg, and j > ky, then (S’ U T")
€ (Us N Uy) ifand only if T € Ug and S € Upy. (%)

First we prove that, If Py R is normal and Y C W", then Y is a Gy-set in
w".

Suppose that m < n and ¢t € 97,. It is known that P, R is normal only if it
is hereditarily normal. Thus the open subset U, W, of Py R is normal.
Since W,, is closed in U,,, W, and discrete in itself, we can find disjoint
open sets in Py R separating Y* and W,, — Y*. Since ¢ induces a one-to-one
correspondence between W,, and W, there is i: W,;, — N such that

mt>
Uis)s'N Uyryr =9

fSeYnW,,and T € W,, — Y.Since if S € W", S belongs to W,, for
exactly one m and ¢, i: W" — N is well defined; choose i(S) > kg for all
S ewn

This i testifies to Y being a Gj-set for suppose there were an S =
<fl’ e ’./;x> € (Y n Ui(T)T) and T = <gl’ e ’gn> € (Ui(S)S - Y)° Assume
without loss of generality that i(S) < i(T). Since S € U,y and kg < i(S)
<UT), f; 1 (T) =gl iT)forallj < n. Thusif S € Wy, T € Wy, for the
same m and 1. But this contradicts () since Uj5ys: N Uypryr = 92.

We now prove that, If W" is a Q-set for all n € N, then Py R is normal.

Suppose that Y and Z are disjoint closed subsets of Py, R. For each m € N,
letJ,, = {f| m|f € K}and forJ C J,, let

Y, = {F € PyR||J| = |F|,J = Jpp, and U,z N Z =D).
Let n = |J|. Since { F*|F € Y,} and W" — {F*|F € Y,} are both G;-sets in
W", and, if G € (W, — Y,), then G* € (W" — {F*|F € Y,)}), there is a j;
or j: W, — N such that, if F€ Y, and G € W, — Y,, then either F* &
UiGyg+ or G* & Ujyps- Thus, by (),

J
(F U G) €& Uprn Uioe
Interchanging Y and Z define Z, and j,,.
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For each F € Py, R choose m(F) € N such that for some J C J,r)
FeY fFeY, FeZ, fFeZ and FE(Y,nZ)if F€E€PyR— (Y
U Z). Finally define

i(F) = lub{j;y (G) + j;z(G) + m(G)|G C F
andJ C J,, for some m < m(G)}.

This i witnesses a separation of ¥ and Z. For suppose there were F € Y,
G € Z,and H € (Uyp)r N Uygys)- Without loss of generality assume i(F)
< i(G).

Since F C H € Uy Jigyr C Jiye- Since m(F) < i(F) < i(G) and
|F| = Joiryels |F| = Ji6yrl and, for each f € F, there is a g; € G such that
g i(G) = f1i(G). Let G’ = {g|f € F). Then |G’| = |F|, Jyyr = Jic)e»
and (G' U F) e (lji(}:-)p N (ji(G)G’)‘ Since G Cc H € lji(p)p, Ji(F)G Cc J,'([.')F
and thus G € U6

Case (1) m(F) < m(G"). Let J = J, . Then, by the definition of m,
F € Y,. However G’ € (W;; — Y,) since m(F) < i(F) and G € (U N
Z). Thus, by the definition of i, i(F) > j,y(F) and, since m(F) < m(G’),
i(G) > j;y(G"). So, by the definition of j;y, (G' U F) & (Uyr)r N Uyg)e)
which is a contradiction.

Case (2). m(G’) <m(F). Since m(F) <i(F), G € (U,pg N Z); so
(Upone: N Z) #9. Thus, by the definition of m, G’ € Z. Let J = J 6~
Then G’ € Z, and F € (W), — Z,). Also i(G) > j,;(G") and, since m(G’)
< m(F), i(F) > j;z(F). Again (G' U F) & (Ujryr N Uigye) gives us a
contradiction.
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