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UNBOUNDED LOEB MEASURES1

C. WARD HENSON

Abstract. Uniqueness of the Carathéodory extension is proved for the

unbounded case of Loeb's measure space construction in nonstandard

analysis and these measures are studied. Methods are developed for hand-

ling sets in the o-algebra generated by the internal sets. A quantitative

theory of degrees of null measure is developed.

In [5] Loeb described a measure construction is nonstandard analysis

which has proved to be of considerable importance. (See [1] [2] and [4], and

forthcoming work of Keisler on stochastic differential equations.) This

construction starts with an internal algebra of sets & (based on an internal set

X) and an internal, finitely additive measure p: 6E —> *R+, both in some

N, -saturated nonstandard extension *91t. An ordinary measure °p is defined

on & by:

°u(A) = [ st('i(/i))    if M(-4) is finite in *R,

I oo otherwise.

(Here st denotes the standard part map on the finite part of *R.) Then °p

can be extended by the Carathéodory procedure to a countably additive

measure on the o-algebra o(&) generated on X by the sets in &. Loeb also

showed that when °p is a finite measure this extension to o(&) is unique.

Here we prove that this uniqueness also holds in the unbounded case. This

answers a question raised by Loeb (see [5, Footnote 2]).

Unbounded Loeb measures arise naturally even when one starts with a

finite measure. For example, if 6E and p are given with p(X) finite, it is useful

to consider the measures °(l/p • p) where p is infinitesimal. We will use these

measures below to develop a quantitative theory of degrees of null measure

for the measure °p.

In this paper and also in [3] a central underlying theme concerns methods

for handling sets which are in the o-algebras generated by internal sets. Such

sets arise not only in connection with Loeb measures but also in many other

settings. They are the simplest external sets and any general methods for

dealing with them are likely to be widely useful. The techniques used here

depend on the simple observation that any set in a(&) is constructed from a
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countable number of sets in 61. In [3] we use the Souslin operation to give an

explicit representation of the sets in a(6E).

We adopt here the usual framework of nonstandard analysis (see [9]) and

we assume familiarity with Loeb's basic paper [5]. Throughout this paper we

use the following notation: 91L is a standard set theoretic superstructure

containing the real field R and *'D1L is an N,-saturated nonstandard exten-

sion of 911.

From now on we consider a fixed internal set A" in  *9lt, a fixed internal

algebra â of subsets of X (which contains JV) and a fixed internal, finitely

additive measure u: 61 -» *R+. (Automatically 6E is closed under internal

*-finite unions and ¡i is   '-finitely additive.) Given any family of sets

6?0 C &, o(@y) denotes the a-algebra of subsets of X which is generated by

So.
Now suppose S is a set in the a-algebra a(6E). It is easy to show that there

exists a countable family 6En C & such that S £ o(6Eo). It is no loss of

generality to assume that &q is a subalgebra of 6£ (i.e. éEq is closed under finite

unions, finite intersections and complements relative to X.) This simple

observation plus the saturation condition on "'Dit are the keys to what is

proved in this paper.

It turns out to be as easy to handle a larger a-algebra of sets than a(6E),

including sets which are each determined by a countable number of sets from

6P in a more general sense. Recall that an algebra ÍB of subsets of X is

complete if it is not only closed under complements (relative to X), finite

unions and finite intersections, but is also closed under unions or inter-

sections of arbitrary collections.

Definition. A set S Q X is countably determined over 6B if there exists a

countable subalgebra 6Erj of 6E such that 5 is in the complete algebra of

subsets of X which is generated by 6Eq.

Denote by C(6B) the collection of all sets S Ç X which are countably

determined over 68. An easy argument shows that 6(68) is a a-algebra and

6(â) D o(S). The main technical fact about 6(68), through which we apply

the N,-saturation principle, is the following:

Lemma 1. Let &q be a countable subalgebra of 68 and let $„ be the complete

algebra of subsets of X which is generated by 68n. If S C X and for each A E 6Eo

either S C A or S n A =0, then for each B E %, either S C B or S n B
= 0.

Proof. Let 9 be the collection of all nonempty sets PCX which can be

represented in the form F = n „ Bn, where Bx, B2, . . . are in 6Eq and each set

in 6P0 or its complement occurs in the list. If F E ty and A E 68n, then either

PEA or F n A =0. Hence A - U {F £ 9\P C A) whenever A £ 6V

Moreover, 1? is a partition of X. It follows that 9>0 consists exactly of those

sets BCX which can be written as B = (J *$' for some ^'çf. Thus if
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B G % and P G <3>, then either P G B or P n B =0.

Now suppose S G X and for each A G 6¡¡n, either S G A or S n A =0.

Let 5,, B2, . . . be a list of all elements of &$ which contain 5. Since each

element of Sq or its complement is in this list, P = fl „ Bn is in ^. But S G P

and therefore, if B G %0 we conclude that either S G B (if P G B) or

S n B =0 (if P n B =0).   □
We remark here that the use of countable subalgebras of 6E in the

definition of G(&) is dictated by the assumption that *91t is only ^-saturat-

ed. More generally, if * 911 is «-saturated, then we can take Q(&) to be the

family of all S G X such that 5 is in the complete algebra generated by some

subalgebra of & which has cardinality < k. In this setting, all the results

below remain true, with the same proofs as given here.

Theorem 1. For each set S in &(&), exactly one of the following conditions

holds (in particular this is true whenever S is in a(&)).

(i) There exists A G & such that A G S and ¡i(A) is infinite.

(ii) There exist (An\n G N) in & such that S G U „ An and p(An) is finite for

each « G N.

Proof. Let S G G(â) and let 8^ be a countable subalgebra of & which

determines S. Let @¿ = {A G @q\ p(A) is finite}. If @¿ covers S then

condition (ii) holds. If not, there exists p G S such that p G U @¿- Let

¿Eg" = {B G éEqIp G B); then â^" is closed under finite intersections and

p(B) is infinite for each B G S¿'. Thus the countable family of all sets

5(«, B) = {A G â\p G A G B and ¡i(A) > «}

(where « G N and B G â£) has the finite intersection property. Since *CDTL is

N,-saturated there exists A G & such that A G S(n, B) for all « G N and

B G @¿'. That is, p(A) is infinite, p G A and AGB for all B G &¿'.

Consider an arbitrary set B from éEq. If A £ B, it follows that p G B, so

p G X \B. That is, X \ B G @¿' and hence A G X \ B. Therefore, for any

B G éEq, either AGB or Ar\B = 0. Since S is determined by Sq it follows

that AGS or Ar\S = 0. Since p G A n S, it must be that A G S, showing

that condition (i) holds.

Finally we must show that (i) and (ii) cannot both hold. If they do, then

A G U„ An; but since these sets are internal and *911 is N,-saturated, we

must have A G Ax u • • • U Ak for some k G N. This is impossible, since

p(A) is infinite while each p(/l„) is finite.   □

Corollary 1. The extension of °p to a countably additive measure on o((£)

is unique.

Proof. Suppose vx and v2 are countably additive measures on a(&) which

agree with   °p on &. Let S G a(&);  since a(&) G ß(&) we may apply

Theorem 1. If condition (i) holds, there exists A G & such that A G S and

°p(A) = 00. Therefore Vj(S) = 00 for j = 1 and j = 2. Otherwise condition
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(ii) holds and there exists (An\n £ N) in 68 such that each ¡x(An) is finite in

*R and S C U„ A„. We may suppose Ax C A2 C . . . , taking finite unions

if  necessary.  Now  we  may  apply  [5, Theorem   1],  as  discussed  above,

obtaining that for/ =1,2

Pj(S n A„) = inf {°n(A)\A E<S andS n AnCA C An).

In particular, vx(S n An) = v2(S n An) for all n EN. Since S n Ax Q S n

A2Q ... and 5= U„(Sn A„), it follows that vx(S) = v2(S). That is,

vx = v2 on all of o(&).   □

It is convenient to let °¡u also denote the unique extension of °u from 68 to

all of o(&). The next result gives another useful way of viewing this extension

measure.

Corollary 2. For each set S in o(68), exactly one of the following conditions

holds:

(i) There exists A £ 68 such that S C A and °ii(A) is finite (and thus °ii(S)

is finite).

(ii) For each «EN there exists An £ 6£ such that An C S and °¡i(An) > n

(and thus  °¡i(S) = oo).

Proof. Fix S E a(68). If S has a subset A E & which has infinite measure,

then obviously condition (ii) holds. Otherwise, by Theorem 1, there are sets

(A„\n E N) in 6? such that SE U„ An and each y,(An) is finite in *R.

Applying [5, Theorem 1] to the restriction of (68, /x) to An, we have that there

exist sets B„, C„ in 6E such that Bn Q S n An <Z Cn <Z An and ix(C„ \ B„) <

2"", for each «EN.

If the numbers u(F, u • • • U Bn), for «EN, are not uniformly bounded

above by an element of N, then condition (ii) evidently holds. Otherwise there

exists a fixed k E N so that for all « £ N

ii(Bx u • • • U B„) < k.

Hence

/i(C, U • • • U Cn) < k + 2"1 + 2~2 + • • • + 2"" < k + 1

for all « E N. Since *91t is N,-saturated, there must exist a set C £ 68 such

that u(C) < k + 1 and C„ Ç C for all «EN. Therefore u(C) is finite and

S = U (S n A„) Ç \J Cn Ç C.
n n

Thus condition (i) holds, and the proof is complete.    □

We now turn to a closer analysis of the sets of °/i measure 0, made possible

by Theorem 1 and its corollaries. As a measure of size we take a set A of

infinitesimals 8 > 0 satisfying

(a) 0 < tj < 8 E A implies tj E A,

(b) S, r/ E A implies 8 + r/ £ A.
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Note that (a), (b) imply that if p G *R andp > A, then also p/n > A for

every « G N. (Here write p > A to meanp > q for every q G A.)

Definition. A set 5 G X is a A-null set relative to (éE, p) if for each

p G *R, p > A implies that there exists A G & such that S C A and p(A) <

P-
Another way of putting the definition is this: S is a A-null set if it is a null

set for the measure °(l/p • p) for every p > A. This makes it clear that the

family of all A-null sets is a o-ideal of subsets of X (i.e. it is closed under

taking subsets and countable unions). We denote this 0-ideal of A-null sets by

9,
We will call A Archimedean if there exists p G *R+ such that

A = {q > 0\q/p is infinitesimal).

That is, this requires that A be just the set of positive infinitesimals in *R

multiplied byp, and sop,p/2,p/3, ... is a decreasing sequence of numbers

which is cofinal (downward) among the numbers greater than A. In this case,

%A is simply the 0-ideal of null sets for the measure °(l/p • p) and nothing

essentially new is involved.

If A is non-Archimedean then for each p > A there must exist q > A such

that pI'q is infinite, since p, p/2, p/3, ... is not cofinal above A as in the

Archimedean case. In some contexts a non-Archimedean interval arises in a

completely natural way and is very useful for technical purposes. For

example, in Robinson's development of asymptotic analysis, a basic role is

played by intervals of the form

A= {p > 0|p < 6" for all« G N}

where 8 > 0 is a fixed infinitesimal. (See [8], [6] and [7].) All such intervals

are non-Archimedean.

Theorem 2. For each S in a(&), S is in ÍBA if and only if for each A G éE,

A G S implies p(A) G A. If A is non-Archimedean, then this equivalence holds

for all S G G(&).

Proof. If A is Archimedean, then %A is the 0-ideal of °(l/p • p)-null sets

for some p. In this case Theorem 2 is just a restatement of Loeb's result [5,

Theorem 1].

For the rest of the proof we assume that A is non-Archimedean and that 5

is in 6(a).
Suppose S is in ÍBA, A G & and A G S. Evidently p(A) < p must hold for

every p > A, since there exists B G & with S Ç B and p(B) < p. Since p(A)

is in *R+, it must therefore be in A.

Conversely, suppose S G G(â) and also fi(A) G A whenever A G & and

A G S. Given p > A, we may choose q > A so that p/q is infinite. We apply

Theorem 1 to S and the internal measure space (&, l/q- p). This shows that
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there must exist Ax C A2 C . . . in 68 such that S C U „An and each \/q-

[i(An) is finite. Since *91L is N,-saturated, there exists A E 68 satisfying

AnE A for all « £ N and \/q ■ ¡i(A) < p/q. That is, n(A) < p and S E

Ö„An C A. Sincep > A was arbitrary, this shows that 5 is in *$>£.   fj

In many cases 6da has a strong closure property which might be loosely

termed closure under '""-finite unions". This was noticed by H. J. Keisler

after we told him about the results above and he has generously agreed to let

us include it here.

Let F be a ""-finite set in *91t of (internal) cardinality t E *N. We think

of a subset y of f X JV as being (essentially) an enumeration (Ya\a £ F) of

subsets of X, where

rfl = {xEX|<a,x>E Y)

for each a E F.

Now let 68 be the internal algebra of subsets of F X X generated in *9H

by sets of the form E X A, where E E F, E is internal and A E 68. Equiva-

lently, 68 is the algebra of all internal sets 77 C F X X such that 77fl £ 68 for

every a £ F.

Theorem 3 (Keisler). Assume A is closed under multiplication by r = \F\. If

Y C F X X,Y E 6(68') and if Ya E <SA for each a E F, then U {Ya\a E F)

is also in <$>A.

Proof. We define an internal finitely additive measure u' on 68' by

y(H) = S   u(77J.
uEf

Note that A must be non-Archimedean since it is closed under multiplication

by t. Thus we can apply Theorem 2 to (68', /t.') and A.

Let 77 E 68' be such that H Q Y. Thus Ha E Ya E <&A for each a E F. It

follows that p.(Ha) E A holds for each a E F. Since the function taking a to

/n(77a) is internal, we may set

8 = max{u(77a)|a E F}

and we have 5 E A. Then

p'(H)-  2   u(77fl)<r3TEA.
aGF

Applying Theorem 2 we conclude that F is a A-null set relative to (68', u').

Therefore, given/? > A there exists 77 E 68' so that Y E 77 and u'(77) < p.

Then

U {F>EF} £ (J {Ha\aEF} £ 68

since (S is closed under internal, *finite unions. Also

,x( U [Ha\a E F}) < S  u(A) = AH) <p
aGF
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since p is '-finitely additive. This shows that (J {Ya\a G F] is in ÇBA,

completing the proof.   □

As an example of an interval A to which Theorem 3 applies, consider the

interval

A= {p > 0\p < 8" for all« G N}

introduced by Robinson [8], [6]. This A is closed under multiplication by

t = \F\ as long as t < 8 ~" holds for some « G N.

We next give a result concerning the "p-measurability of the sets U { Ya\a

G F) when °p is a finite measure. Loosely speaking, it states that the

o-algebra of °p-measurable sets is closed under "*-finite unions."

Theorem 4. Assume that p(X) is finite. If Y G F X X and Y G o(&'), then

U { Ya\a G F) is  °p-measurable.

Proof. Since °p is a finite measure, the collection of °p-measurable sets is

closed under the Souslin operation. Thus it suffices to show that U { Ya\a G

F] can be derived from sets in & by the Souslin operation. The proof of this

is much like the proof of Theorem 1 in [3]. Here, instead of a standard part

map, we make use of the coordinate projection ir: F X À'-» X defined by

ir(a, x) = x. First observe that if H is an internal set in &' then tr(H), which

equals U {Ha\a G F), is an element of 6E. Also, if Hx D H2 D . . . are in &',

then

A n h\ = n *(#«)•
V     n I „

(The right side contains x only if A X {x} intersects each Hn; since ""Dit is

K,-saturated, this is the same as saying that A x {x} intersects D nHn.)

Given Y G o(&'), we may represent Y in terms of elements of &' using the

Souslin operation. That is, there exist sets (Hs\s G Seq) from &' such that

y = u n HaW.
a n

(Here Seq is the set of finite sequences from N, a ranges over all functions

from N to N and a\n is a(\), a(2), . . . , a(n).) Since &' is closed under finite

intersections we may assume that Hs D H, whenever 5 is an initial segment of

/. Then

U {Ya\aGF)=ir(Y) = (J   Pi *(#„,,,)
a n

which is derived from sets in & by the Souslin operation.   □

We note that the introduction of the Souslin operation here seems

necessary. It can be shown, using an argument like the one given for Theorem

4 in [3], that every set derived by the Souslin operation from sets in & can be

represented in the form ir(Y) with Y G a(â').

Also, the proof of Theorem 4 is valid without any change under the weaker

assumption that Y can be derived from sets in &' using the Souslin operation.
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