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A NORMAL FIRST COUNTABLE

ccc NONSEPARABLE SPACE

MURRAY G. BELL

Abstract. We construct an absolute example of a space having the proper-

ties in the title. Let Y be the set of nonempty finite subsets of the Cantor

cube of countable weight. The Pixley-Roy topology on Y is not normal, but

the Vietoris topology on Y is normal. Our space can be considered a

normalization of the Pixley-Roy topology on Y by adding cluster points

which as a subspace have the Vietoris topology. The Alexandroff duplicat-

ing procedure is used liberally to glue the space together. The example is

also a sigma compact paracompact/7-space.

If further set-theoretic assumptions are made (e.g.  V = L or MA +

-i CH), then it is known that even perfectly normal such examples exist.

0. Introduction. A space X is ccc if each collection of disjoint open sets is at

most countable. A Souslin line is a ccc nonseparable linearly ordered topo-

logical space. It is consistent with the usual axioms for set theory (i.e. ZFC)

that a Souslin line exists (Jech [7]). Such a line yields an example of a

perfectly normal first countable ccc nonseparable space (cf. Rudin [11]).

Martin's axiom plus the negation of the continuum hypothesis is also con-

sistent with the usual axioms (Solovay and Tennenbaum [12]). It implies that

there are no Souslin lines, nonetheless, one is still able to construct a perfectly

normal first countable ccc nonseparable space (Przymusiñski and Tall [10]).

One is naturally led to wondering whether an absolute example with such

properties can be constructed in ZFC alone. According to a theorem of F.

Tall in [13], the existence of such a space implies either the existence of a

hereditarily Lindelöf nonseparable regular F2 space or the existence of a

nonmetrizable normal Moore space. Neither of these problems has been

satisfactorily answered yet.

A less grandiose endeavour would be to construct an absolute example of a

normal first countable ccc nonseparable space. As far as the author knows,

no such absolute example exists in the literature to date. The example X* that

we construct is also sigma compact and is a perfectpreimage of a metrizable

space.

1. Two special topologies. Let X be a F, space with topology r and let C(X}

be the space of all nonemtpy closed subsets of X endowed with the Vietoris

topology [15]. If 0 is a finite subcollection of r, define <(9> = {Y E C(X}:
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y ç U 0 and for each O G 0, Y n O ¥= 0). The collection «0>: 0 is a

finite subcollection of i) serves as a base for the topology on C(X}. The

subspace of C(X} consisting of all finite subsets of X will be denoted by

F(xy.
Another useful topology on the nonempty closed subsets of X, denoted by

C[X], is the Pixley-Roy topology [9]. If AT G C[X] and O G i, then define

[K,0]= {G G C[X]: KgGgO}. The collection {[K, O]: K G C[X]

and O G t) serves as a base for the topology on CIA']. The subspace of C[X]

consisting of all finite subsets of X will be denoted by F[X]. F[X] has a finer

topology then F(X). An excellent reference for facts about both F[X] and

F(Xy (and more) is E. van Douwen [3].

2. Construction of X* and its properties. From now on, X will denote the

Cantor cube of weight w, i.e. X = [D(2)]u, where w is the first infinite ordinal

and D(2) is the discrete space of cardinality 2. Let ^(X) be the collection of

all nonempty finite subsets of X and let <3*(X) = f(A') u {0}. The collec-

tion of all clopen subsets of X is denoted by ® and is a base for the topology

on X. We denote the collection of all finite subsets of % by & *.

If 6 € <&*, then define <0> = {F G $*(X): F G U 0 and for each

O G 0, F n O * 0}. Note that 0 G <0> iff 0 = 0. If F G f *(X) and

O G %, then define [F, O] = {G G <$*(X): F G G G O}.

We now define the space X*.

X* = {(F, G): F G <5*{X), G G <5*(X) and F n G = 0}.

Henceforth, whenever we write (F, G) it is understood that F n G = 0. A

basic neighbourhood of (F, G) has the form K[(F, G), 0 ] = {(#, K): H [j K

G <0 > and AT G [G, U 0 - F]) where 0 G ffi * and F u G G <0 >. It is
straightforward to show that V[(F, G), 0,02] G V[(F, G), 0,] n V[(F, G),

02] where 0, n 02 = {O, n 02: O, G 0,, 02 G 02 and Oxc\02¥= 0).

To verify that this is a valid neighbourhood assignment to the points of X*,

it suffices now to show that each basic neighbourhood contains a basic

neighbourhood of each of the points that it contains. Let V[(F, G), 0 ] be a

basic neighbourhood of (F, G). If (H, K) G V[(F, G), 0], then H u K G

<0 > and K G [G, U 0 - F]. Choose 0 ' G S * such that H u K G <0'> ç

<0 > and U 0 ' - // ç U 0 - F. Then, (/Y, AT) G V[(H, K), 0 '] ç
K[(F,G), 0].

The point (0, 0) is the only isolated point in X*. To motivate our choice of

such a topology, let us look more closely at three special subspaces of X*.

Define

P = {(0, G): G G 9(X)},

A = {(F, G): |F| + |G| = 1),

V= {(F,0):F G ^(A-)}.

As subspaces of X*, P is homeomorphic to F[X], A is homeomorphic to the

Alexandroff double of X (cf. Willard [16]), and V is homeomorphic to F(X}.
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Furthermore, if we define, for each G E iS*(X) and each « > |C7|, A(G, n) =

{(0, 77): G C 77 and |77| = «} U {(77, G): |77| = « - \G\], then A(G, n) is
homeomorphic to the Alexandroff double of the subspace {H E F(X — G}:

\H\ = n-\G\}.
A. X* is O-dimensional. We show that each V[(F, G), 0] is closed in A"*.

Assume that (77, K) $ V[(F, G), 0]. If 77 u K £ <0>, then choose 0' £

© * such that 77 u K £ <0'> and <0'> n <0> = 0. If 77 u K E <0>, but
K E [G, U0 - F], then choose 0' £ <$>* such that 77 u K E <0'> and

U 0' n [G - (77 u TO] = 0. In either case, V[(H, K), 0'] n V[(F, G), 0]
= 0.

B. X* is first countable. This follows from the fact that the finite subsets of

X have countable neighbourhood bases.

C. X* is F, (and therefore F2). Each point in X* is the intersection of its

clopen basic neighbourhoods.

D. The mapping/: X* -* F(X) defined by/((F, G)) = F u G is perfect,

(i) Let us check that/ is continuous. If <0> is a basic open set of F(X),

then

/-'<0>={(F,G):Fu GE<0>}

= U{K[(F, G), 0]:Fu GE<0>}

which is open in X*.

(ii) Let us check that/ is closed. Let C be closed in X*. Take F E F<JV) -

/(C). Then, {(A, F - A): A E F) n C = 0. For each ^Cf, choose an

O^ëS' such that F6(6^) and V[(A, F - A), 0J n C = 0. Choose

0 E <S* such that F E <0> ç n „cX^)- Then <0> n/(C) = 0; be-

cause, if R E <0> n /(C), then Ä = A u £ where (,4, B) £ C, and this

means that (A, B) E V[(F - TJ, F n TJ), 0f_B] n C, which is a contradic-

tion.

(iii)/is clearly a finite-to-one map.

Since X is compact, it follows from a theorem due to L. Vietoris [15] that

C(X} is compact. For each « < w, {F E C(X}: \F\ < «} is a closed

subspace of C<Ar>. Therefore, F(X} is sigma compact (a union of countably

many compact subspaces). Since sigma compactness is preserved under

perfect preimages, we have that A"* is sigma compact. Since X is compact and

metrizable, C(X) is metrizable (cf. Michael [8]) and therefore F(X) is

metrizable. The space X*, being a perfect preimage of F(X), is a paracom-

pact/7-space. Such spaces are investigated by A. Arhangel'skiï in [1].

E. X* is ccc. As noted before, F is homeomorphic to F[X]. E. van Douwen

[3] has shown that for every F, space Y, d( ßF[ Y]) = nw( Y), where d is the

density character, ßF[Y] is the Stone-Cech compactification of F[Y] and

nw( Y) is the smallest cardinal of a network for Y (a collection of nonempty

subsets % of a space Y is called a network if for each y £ Y and each

neighbourhood  U of y, y £ N E U for some N £ %). Since X has a
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countable network, it follows that ßF[X] is separable and thus that F[X] is

ccc. Since P u {(0, 0)} is dense in X*, X* is ccc.

F. X* is not separable. In fact, d(X*) = c where c = |[£)(2)]"|. Assume Y is

a dense subset of X* and \Y\ <c. Choose K G ?(X) such that for all

(A, B) G Y, K <£B. Then (0, K) G Clx.Y, since K[(0, AT), {X}] n T = 0.
Hence, any dense subset of A* has cardinality c.

Thus, we see that A* is a first countable, O-dimensional, sigma compact

(therefore normal) ccc nonseparable space. This is most surprising when we

realize that X* admits a finte-to-one perfect map onto a metric space.

3. Concluding remarks. Since ßF[X] is separable, it follows (see van

Douwen [4]) that every compactification of F[X] is separable. Hence every

compactification of A* is separable. In particular, d(ßX*) i= d(X*). Since A*

is a paracompact p-space, this answers negatively a question raised by van

Douwen in [4]. The author thanks Jan van Mill for bringing this to his

attention. Furthermore, since A* is not separable, it follows that X* is a first

countable Lindelöf space with no first countable compactification. Examples

of such a phenomenon were previously given by Ul'janov [14] and van

Douwen and Przymusiñski [5].

A. Hajnal and I. Juhász [6] have shown that it is consistent with ZFC that

every first countable compact ccc space be separable. This shows us that our

example cannot be made locally compact in ZFC alone.

The author was initially motivated by an open question stated in [2].

Namely, is there a "real" example of a first countable normal ccc space with

no dense Lindelöf subspace? Unfortunately, A* is Lindelöf. The idea was to

find a first countable normalization of F[A] which was not Lindelöf. This

question is still open.
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