THE STABILITY OF THE EQUATION $f(x+y)=f(x) f(y)$

JOHN BAKER ${ }^{1}$, J. LAWRENCE ${ }^{2}$ AND F. ZORZITTO ${ }^{3}$

Abstract.It is proved that if f is a function from a vector space to the real numbers satisfying

$$
|f(x+y)-f(x) f(y)|<\delta
$$

for some fixed δ and all x and y in the domain, then f is either bounded or exponential.

In a 1941 paper D . H. Hyers proved that if $f: E \rightarrow E^{\prime}$ is a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leqslant \delta
$$

for some $\delta>0$ and all x, y in E, then there is a unique mapping $l: E \rightarrow E^{\prime}$ such that $\|f(x)-l(x)\| \leqslant \delta$ and $l(x+y)=l(x)+l(y)$ for all x, y in E. Hyers called this the stability of the linear equation

$$
f(x+y)=f(x)+f(y)
$$

J. Aczél and D. Kölzow have recently communicated to us a problem of E. Lukacs. Namely, does the equation $f(x+y)=f(x) f(y)$ have an anlaogous stability theorem, whereby f is approximated by an exponential function? Our main result is the following.

Theorem 1. Let V be a vector space over the rationals Q and let $f: V \rightarrow R$ be a real valued function such that

$$
\begin{equation*}
|f(x+y)-f(x) f(y)| \leqslant \delta \text { for some } \delta>0 \text { and all } x, y \text { in } V . \tag{1}
\end{equation*}
$$

Then either $|f(x)| \leqslant \max (4,4 \delta)$, or there is a Q-linear function $l: V \rightarrow R$ such that $f(x)=\exp (l(x))$ for all x in V.

We first prove the result when f is defined on the integers Z and takes nonnegative real values, since this case captures the essence of Theorem 1.

Theorem 2. Let $f: Z \rightarrow R^{+}$take nonnegative values and be such that the functional approximation (1) holds for all x, y in Z. Then either $f(x) \leqslant$ $\max (4,4 \delta)$ or $f(x)=a^{x}$ for some real number $a>0$.

Received by the editors May 1, 1978.
AMS (MOS) subject classifications (1970). Primary 39A15; Secondary 34D05.
Key words and phrases. Functional equation, stability.
${ }^{1}$ Research supported by NCR Grant A7153.
${ }^{2}$ Research supported by NRC Grant A4540 and University of Waterloo Research Grant 131-7052.
${ }^{3}$ Research supported by NCR Grant A4655.

We observe that if $f(x)>\max (4,4 \delta)$ for some integer x, then x can be taken to be nonnegative. If x were negative, then $g(n)=f(-n)$ would define a new function g still satisfying (1) and such that for some positive $-x$, $g(-x)>\max (4,4 \delta)$. In the subsequent Lemmas 3, 4 and the proof of Theorem $2, f$ will denote a function exceeding $\max (4,4 \delta)$ for some nonnegative integer.

Lemma 3. If m, n are positive integers and $f(m) \geqslant 2$, then

$$
\begin{equation*}
\left|f(m n) / f^{n}(m)-1\right| \leqslant 2 \delta / f^{2}(m) \tag{2}
\end{equation*}
$$

Proof. We first use induction on n to show that

$$
\begin{equation*}
\left|f(n m)-f^{n}(m)\right| \leqslant\left(1+f(m)+\cdots+f^{n-2}(m)\right) \delta \tag{3}
\end{equation*}
$$

For $n=1$, (3) is trivial. Assuming (3) holds for some n and using (1) we get:

$$
\begin{aligned}
\mid f((n+ & 1) m)-f^{n+1}(m) \mid \\
& \leqslant|f((n+1) m)-f(n m) f(m)|+\left|f(n m) f(m)-f^{n+1}(m)\right| \\
& \leqslant \delta+f(m)\left(1+f(m)+\cdots+f^{n-2}(m)\right) \delta \\
& =\left(1+f(m)+\cdots+f^{n-1}(m)\right) \delta, \quad \text { as desired. }
\end{aligned}
$$

Division by $f^{n}(m)$ in (3) and the assumption that $f(m) \geqslant 2$ yields (2).
Lemma 4. There exists a positive integer k such that for all integers $x \geqslant k$, $f(x)>\max (4,4 \delta)$.

Proof. Using the hypothesis on f we choose a positive integer m such that $f(m)>\max (4,4 \delta)$. An application of (1) or (2) shows that $f(\mathrm{~lm})$ increases without bound as l increases through the positive integers.

Notice that $f(x) \neq 0$ for all integers x. Indeed, $|f(m)-f(m-x) f(x)| \leqslant$ δ together with $f(x)=0$ would yield $4 \delta<\delta$.

Choose l large enough so that for $i=1,2, \ldots, m-1, f(i) f(l m)>$ $\max (5,5 \delta)$. If $x \geqslant l m$, then $x=t m+i$ where $i=1,2, \ldots, m-1$ and $t \geqslant l$. By (1) we have $|f(x)-f(i) f(t m)| \leqslant \delta$. Then

$$
f(x) \geqslant f(i) f(t m)-\delta>\max (5,5 \delta)-\delta \geqslant \max (4,4 \delta)
$$

We may therefore take $k=l m$.
Proof of Theorem 2. Let k be as in Lemma 3 and suppose x, y, z are positive integers with $x, y \geqslant k$. Then, by Lemmas 1 and 2 :

$$
\left|f(x y z) / f^{x z}(y)-1\right| \leqslant 2 \delta / f^{2}(y)<1 / 2
$$

and

$$
\left|f(x y z) / f^{y z}(x)-1\right| \leqslant 2 \delta / f^{2}(x)<1 / 2
$$

Since $f(x y z) / f^{x z}(y)$ and $f(x y z) / f^{y z}(x)$ are both bounded and bounded away from 0 for all z, their quotients $\left(f^{y}(x) / f^{x}(y)\right)^{z}$ and $\left(f^{x}(y) / f^{y}(x)\right)^{z}$ are
bounded for all z. Thus

$$
\begin{equation*}
f^{x}(y)=f^{y}(x) \text { for all } x, y \geqslant k \tag{4}
\end{equation*}
$$

Let $a=(f(k))^{1 / k}$. By (4), $f(x)=a^{x}$ for all $x \geqslant k$.
Now suppose w is any integer and choose x such that $x \geqslant k$ and $x+w \geqslant$ k. Then

$$
|f(x+w)-f(x) f(w)| \leqslant \delta,
$$

or $\left|a^{x+w}-a^{x} f(w)\right| \leqslant \delta$; so that $a^{x}\left|a^{w}-f(w)\right| \leqslant \delta$. Letting $x \rightarrow \infty$ it follows that $f(w)=a^{w}$. This completes the proof of Theorem 2.

The next two results generalize Theorem 2.
Theorem 5. If $f: Z \rightarrow R$ satisfies (1) (but is allowed to take negative values), then either $|f(x)| \leqslant \max (4,4 \delta)$ or there is a real b such that $f(x)=b^{x}$, for all x in Z.

Proof. Since f satisfies (1), so does $|f|: Z \rightarrow R^{+}$, due to the inequalities

$$
||f(x+y)|-|f(x)|| f(y)||\leqslant|f(x+y)-f(x) f(y)| \leqslant \delta
$$

If $|f|$ exceeds $\max (4,4 \delta)$ at some integer, deduce from Theorem 2 that $|f(x)|=a^{x}$, for $a=|f(1)|>0$. By further applying (1) we can show that $f(x)=(f(1))^{x}$, for all x in Z.

Theorem 6. Let $f: Q \rightarrow R$ satisfy (1) for all rationals x, y and some $\delta>0$. Then either $|f(x)| \leqslant \max (4,4 \delta)$,or $f(x)=e^{\gamma x}$ for some real number γ, and all rational x.

Proof. Assume $f \geqslant 0$ for the moment. Also suppose that there is a rational r such that $f(r)>\max (4,4 \delta)$. As in Lemma 4, $f(n r)$ increases without bound when the integer n tends to $+\infty$. Because the rationals $n r$ take integral values infinitely often, f is unbounded over Z. By Theorem $5 f(m)=a^{m}$ where $a=f(1)>0$ and m is any integer.

Let $x=p / q$ be any rational. The function $g: Z \rightarrow R$ defined by $g(n)=$ $f(n x)$ is unbounded and satisfies (1). By Theorem $5, g(n)=b^{n}$ for some b. In particular: $b=g(1)=f(x)$ and $b^{q}=g(q)=f(q x)=f(p)=a^{p}$. This yields $f(x)=a^{x}$, or $f(x)=e^{\gamma x}$ where $a=e^{\gamma}$.

The case where $f \geqslant 0$ fails and $|f|$ exceeds $\max (4,4 \delta)$ at some rational does not arise when Q is the domain of f. This can be seen by considering the function $|f|$, which still satisfies (1). Then $|f(x)|=a^{x}$ or $f(x)= \pm a^{x}$. An application of (1) and the fact every rational x is even will show that the negative sign cannot occur for any x.

Lemma 7. Let $f: V \rightarrow R$ be as in Theorem 1. If $f(x)>\max (4,4 \delta)$ at some x in V, then for any y in V there is a θ in R such that $f(t y)=e^{\theta t}$ for all t in Q.

Proof. Assume for the moment $f \geqslant 0$. We first observe that if $u \in V$ and $f(u)>\max (4,4 \delta)$, then $f(t u)=e^{\alpha t}$ for some real $\alpha>0$ and any rational t. Simply consider $g: Q \rightarrow R$ given by $g(t)=f(t u)$. The approximation (1)
holds for g and since $g(1)>\max (4,4 \delta), g$ is unbounded as noted in Lemma 4. Thus $g(t)=e^{\alpha t}$, due to Theorem 6. That $\alpha>0$ follows because $e^{\alpha}>$ $\max (4,4 \delta)$.

For a fixed y in V either $f(t y)=1$ for all rational $t, f(z)>1$, or $f(z)<1$ for some rational multiple $z=k y$.

In the first case take $\gamma=0$.
Now assume $f(z)>1$ for some $z=k y$. For the given x such that $f(x)>$ $\max (4,4 \delta)$ and any rational t we have $f(t x)=e^{\alpha t}$ for some real $\alpha>0$. Then we get from (1):

$$
\begin{equation*}
\left|f(t x+z)-e^{\alpha t} f(z)\right| \leqslant \delta . \tag{5}
\end{equation*}
$$

From (5) we get that $f(t x+z)$ is unbounded over all t in Q. Because $f(z)>1, f(t x+z)>e^{\alpha t}$ for all sufficiently large t. Hence there is a rational multiple $u=j x$ of x such that $f(u+z)>f(u)>\max (4,4 \delta)$. Applying our first observation we get $\gamma>\beta>0$ such that for all rational t :

$$
f(t(u+z))=e^{\gamma t}>e^{\beta t}=f(t u) .
$$

From (1) we deduce that for all t

$$
e^{\beta t}\left|e^{(\gamma-\beta) t}-f(t z)\right|=\left|e^{\gamma t}-e^{\beta t} f(t z)\right| \leqslant \delta .
$$

Thus $f(t z)$ is unbounded over all t in Q. From Theorem 5 one sees that $f(t z)=e^{e t}$ for some real ε and all t in Q. Since z is a multiple of $y, f(t y)=e^{\theta t}$ for some real θ and all t in Q.

The final case is that $f(z)<1$. Here (5) still applies, $f(t x+z)$ is unbounded over t in Q and $f(t x+z)<e^{\alpha t}$ for all sufficiently large t. (Note f never vanishes, as in Lemma 4.) Hence there is a vector u in V such that $f(u)>f(u+z)>\max (4,4 \delta)$. Let $w=u+z, v=-z$. Then $f(w+v)>$ $f(v)>\max (4,4 \delta)$. As in the case above we get that $f(t v)=e^{e t}$ for some ε. Again $f(t y)=e^{\theta t}$ for some θ, since v is a multiple of y.

The case where f is not always positive never arises, for the same reasons as in Theorem 6. Thus Lemma 7 is proved.

Proof of Theorem 1. Suppose f is unbounded over V. Let $u, v \in V$. By Lemma 7 there are reals α, β, γ such that for all t in $Q, f(t u)=e^{\alpha t}$, $f(t v)=e^{\beta t}, f(t(u+v))=e^{\gamma t}$. From (1) we get

$$
\left|e^{\gamma t}-e^{\alpha t} e^{\beta t}\right| \leqslant \delta \quad \text { for all } t \text { in } Q .
$$

From the nature of exponentials it follows that $\gamma=\alpha+\beta$. Hence $f(u+v)$ $=f(u) f(v)$. It is then well known that $f(x)=\exp (l(x))$ for some Q-linear function l.

Theorem 8. Suppose V is a real normed linear space, $\delta>0$ and $f: V \rightarrow R$ satisfies (1). If f is bounded above on a nonvoid open subset of V, then either $|f(x)| \leqslant \max (4,4 \delta)$ for all x in V or there exists a continuous linear $l: V \rightarrow R$ such that $f(x)=\exp (l(x))$ for all x in V.

Theorem 9. Suppose $f: R^{n} \rightarrow R, \delta>0$ and (1) holds for all x, y in R^{n}. If f is bounded above on a subset of R^{n} of positive Lebesgue measure, then either $|f(x)| \leqslant \max (4,4 \delta)$ for all x in R^{n}, or there is an n-tuple a such that $f(x)=\exp (a \cdot x)$ for all x in R^{n}.

These last two results follow easily form Theorem 1 and well-known properties of additive functions.

Remark 10. In Theorems $1,2,5,8$ and $9 \max (4,4 \delta)$ can be replaced by $\rho=(1+\sqrt{1+4 \delta}) / 2$. To see this, it suffices to show that if $|f(x)|>\rho$ for some x then f is unbounded. In that case $|f(x)|>1$ and $f(x)^{2}-|f(x)|>\delta$. Let $\Delta=\delta /\left(f(x)^{2}-|f(x)|\right)$. Then $0<\Delta<1$ and we have from (3),

$$
\left|f(n x)-f^{n}(x)\right| \leqslant \delta\left(1+|f(x)|+\cdots+f(x)^{n-2}\right) .
$$

Hence

$$
\left|f(n x) / f(x)^{n}-1\right| \leqslant\left(\delta / f(x)^{2}\right) \sum_{k=0}^{\infty}|f(x)|^{-k}=\Delta
$$

for $n=1,2,3, \ldots$ Since $|f(x)|>1, f(n x)$ is unbounded in n.
Notice that if $f(x)=\rho$ for all x then (1) holds.

References

1. D. H. Hyers, On the stability of the linear functional equation, Proc. Mat. Acad. Sci. U.S.A. 27 (1941), 222-224.

Faculty of Mathematics, University of Waterloo, Waterloo, Ontario N2L 3Gl Canada

