THE STABILITY OF THE EQUATION f(x + y) = f(x)f(y)

JOHN BAKER¹, J. LAWRENCE² AND F. ZORZITTO³

ABSTRACT. It is proved that if f is a function from a vector space to the real numbers satisfying

$$|f(x+y) - f(x)f(y)| < \delta$$

for some fixed δ and all x and y in the domain, then f is either bounded or exponential.

In a 1941 paper D. H. Hyers proved that if $f: E \to E'$ is a mapping between Banach spaces such that

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for some $\delta > 0$ and all x, y in E, then there is a unique mapping $l: E \to E'$ such that $||f(x) - l(x)|| \le \delta$ and l(x + y) = l(x) + l(y) for all x, y in E. Hyers called this the stability of the linear equation

$$f(x + y) = f(x) + f(y).$$

J. Aczél and D. Kölzow have recently communicated to us a problem of E. Lukacs. Namely, does the equation f(x + y) = f(x)f(y) have an anlaogous stability theorem, whereby f is approximated by an exponential function? Our main result is the following.

THEOREM 1. Let V be a vector space over the rationals Q and let $f: V \to R$ be a real valued function such that

$$|f(x+y) - f(x)f(y)| \le \delta$$
 for some $\delta > 0$ and all x, y in V . (1)

Then either $|f(x)| \le \max(4, 4\delta)$, or there is a Q-linear function $l: V \to R$ such that $f(x) = \exp(l(x))$ for all x in V.

We first prove the result when f is defined on the integers Z and takes nonnegative real values, since this case captures the essence of Theorem 1.

THEOREM 2. Let $f: Z \to R^+$ take nonnegative values and be such that the functional approximation (1) holds for all x, y in Z. Then either $f(x) \le \max(4, 4\delta)$ or $f(x) = a^x$ for some real number a > 0.

Received by the editors May 1, 1978.

AMS (MOS) subject classifications (1970). Primary 39A15; Secondary 34D05.

Key words and phrases. Functional equation, stability.

¹Research supported by NCR Grant A7153.

²Research supported by NRC Grant A4540 and University of Waterloo Research Grant 131-7052.

³Research supported by NCR Grant A4655.

We observe that if $f(x) > \max(4, 4\delta)$ for some integer x, then x can be taken to be nonnegative. If x were negative, then g(n) = f(-n) would define a new function g still satisfying (1) and such that for some positive -x, $g(-x) > \max(4, 4\delta)$. In the subsequent Lemmas 3, 4 and the proof of Theorem 2, f will denote a function exceeding $\max(4, 4\delta)$ for some nonnegative integer.

LEMMA 3. If m, n are positive integers and $f(m) \ge 2$, then

$$|f(mn)/f^n(m)-1| \leq 2\delta/f^2(m). \tag{2}$$

243

PROOF. We first use induction on n to show that

$$|f(nm) - f^{n}(m)| \le (1 + f(m) + \cdots + f^{n-2}(m))\delta.$$
 (3)

For n = 1, (3) is trivial. Assuming (3) holds for some n and using (1) we get:

$$|f((n+1)m) - f^{n+1}(m)|$$

$$\leq |f((n+1)m) - f(nm)f(m)| + |f(nm)f(m) - f^{n+1}(m)|$$

$$\leq \delta + f(m)(1 + f(m) + \dots + f^{n-2}(m))\delta$$

$$= (1 + f(m) + \dots + f^{n-1}(m))\delta, \text{ as desired.}$$

Division by $f^n(m)$ in (3) and the assumption that $f(m) \ge 2$ yields (2).

LEMMA 4. There exists a positive integer k such that for all integers $x \ge k$, $f(x) > \max(4, 4\delta)$.

PROOF. Using the hypothesis on f we choose a positive integer m such that $f(m) > \max(4, 4\delta)$. An application of (1) or (2) shows that f(lm) increases without bound as l increases through the positive integers.

Notice that $f(x) \neq 0$ for all integers x. Indeed, $|f(m) - f(m-x)f(x)| \leq \delta$ together with f(x) = 0 would yield $4\delta < \delta$.

Choose l large enough so that for i = 1, 2, ..., m - 1, $f(i)f(lm) > \max(5, 5\delta)$. If x > lm, then x = tm + i where i = 1, 2, ..., m - 1 and t > l. By (1) we have $|f(x) - f(i)f(tm)| \le \delta$. Then

$$f(x) \ge f(i)f(tm) - \delta > \max(5, 5\delta) - \delta \ge \max(4, 4\delta).$$

We may therefore take k = lm.

PROOF OF THEOREM 2. Let k be as in Lemma 3 and suppose x, y, z are positive integers with $x, y \ge k$. Then, by Lemmas 1 and 2:

$$|f(xyz)/f^{xz}(y) - 1| \le 2\delta/f^2(y) < 1/2$$

and

$$|f(xyz)/f^{yz}(x) - 1| \le 2\delta/f^2(x) < 1/2.$$

Since $f(xyz)/f^{xz}(y)$ and $f(xyz)/f^{yz}(x)$ are both bounded and bounded away from 0 for all z, their quotients $(f^{y}(x)/f^{x}(y))^{z}$ and $(f^{x}(y)/f^{y}(x))^{z}$ are

bounded for all z. Thus

$$f^{x}(y) = f^{y}(x)$$
 for all $x, y \ge k$. (4)

Let $a = (f(k))^{1/k}$. By (4), $f(x) = a^x$ for all $x \ge k$.

Now suppose w is any integer and choose x such that $x \ge k$ and $x + w \ge k$. Then

$$|f(x+w)-f(x)f(w)| \leq \delta,$$

or $|a^{x+w} - a^x f(w)| \le \delta$; so that $a^x |a^w - f(w)| \le \delta$. Letting $x \to \infty$ it follows that $f(w) = a^w$. This completes the proof of Theorem 2.

The next two results generalize Theorem 2.

THEOREM 5. If $f: Z \to R$ satisfies (1) (but is allowed to take negative values), then either $|f(x)| \le \max(4, 4\delta)$ or there is a real b such that $f(x) = b^x$, for all x in Z.

PROOF. Since f satisfies (1), so does $|f|: Z \to R^+$, due to the inequalities

$$||f(x+y)| - |f(x)||f(y)|| \le |f(x+y) - f(x)f(y)| \le \delta.$$

If |f| exceeds max(4, 4 δ) at some integer, deduce from Theorem 2 that $|f(x)| = a^x$, for a = |f(1)| > 0. By further applying (1) we can show that $f(x) = (f(1))^x$, for all x in Z.

THEOREM 6. Let $f: Q \to R$ satisfy (1) for all rationals x, y and some $\delta > 0$. Then either $|f(x)| \leq \max(4, 4\delta)$, or $f(x) = e^{\gamma x}$ for some real number γ , and all rational x.

PROOF. Assume $f \ge 0$ for the moment. Also suppose that there is a rational r such that $f(r) > \max(4, 4\delta)$. As in Lemma 4, f(nr) increases without bound when the integer n tends to $+\infty$. Because the rationals nr take integral values infinitely often, f is unbounded over Z. By Theorem 5 $f(m) = a^m$ where a = f(1) > 0 and m is any integer.

Let x = p/q be any rational. The function $g: Z \to R$ defined by g(n) = f(nx) is unbounded and satisfies (1). By Theorem 5, $g(n) = b^n$ for some b. In particular: b = g(1) = f(x) and $b^q = g(q) = f(qx) = f(p) = a^p$. This yields $f(x) = a^x$, or $f(x) = e^{\gamma x}$ where $a = e^{\gamma}$.

The case where $f \ge 0$ fails and |f| exceeds max(4, 4 δ) at some rational does not arise when Q is the domain of f. This can be seen by considering the function |f|, which still satisfies (1). Then $|f(x)| = a^x$ or $f(x) = \pm a^x$. An application of (1) and the fact every rational x is even will show that the negative sign cannot occur for any x.

LEMMA 7. Let $f: V \to R$ be as in Theorem 1. If $f(x) > \max(4, 4\delta)$ at some x in V, then for any y in V there is a θ in R such that $f(ty) = e^{\theta t}$ for all t in Q.

PROOF. Assume for the moment $f \ge 0$. We first observe that if $u \in V$ and $f(u) > \max(4, 4\delta)$, then $f(tu) = e^{\alpha t}$ for some real $\alpha > 0$ and any rational t. Simply consider $g: Q \to R$ given by g(t) = f(tu). The approximation (1)

holds for g and since $g(1) > \max(4, 4\delta)$, g is unbounded as noted in Lemma 4. Thus $g(t) = e^{\alpha t}$, due to Theorem 6. That $\alpha > 0$ follows because $e^{\alpha} > \max(4, 4\delta)$.

For a fixed y in V either f(ty) = 1 for all rational t, f(z) > 1, or f(z) < 1 for some rational multiple z = ky.

In the first case take $\gamma = 0$.

Now assume f(z) > 1 for some z = ky. For the given x such that $f(x) > \max(4, 4\delta)$ and any rational t we have $f(tx) = e^{\alpha t}$ for some real $\alpha > 0$. Then we get from (1):

$$|f(tx+z)-e^{\alpha t}f(z)| \leq \delta.$$
 (5)

From (5) we get that f(tx + z) is unbounded over all t in Q. Because f(z) > 1, $f(tx + z) > e^{\alpha t}$ for all sufficiently large t. Hence there is a rational multiple u = jx of x such that $f(u + z) > f(u) > \max(4, 4\delta)$. Applying our first observation we get $\gamma > \beta > 0$ such that for all rational t:

$$f(t(u+z))=e^{\gamma t}>e^{\beta t}=f(tu).$$

From (1) we deduce that for all t

$$e^{\beta t}|e^{(\gamma-\beta)t}-f(tz)|=|e^{\gamma t}-e^{\beta t}f(tz)|\leq \delta.$$

Thus f(tz) is unbounded over all t in Q. From Theorem 5 one sees that $f(tz) = e^{\epsilon t}$ for some real ϵ and all t in Q. Since z is a multiple of y, $f(ty) = e^{\theta t}$ for some real θ and all t in Q.

The final case is that f(z) < 1. Here (5) still applies, f(tx + z) is unbounded over t in Q and $f(tx + z) < e^{\alpha t}$ for all sufficiently large t. (Note f never vanishes, as in Lemma 4.) Hence there is a vector u in V such that $f(u) > f(u + z) > \max(4, 4\delta)$. Let w = u + z, v = -z. Then $f(w + v) > f(v) > \max(4, 4\delta)$. As in the case above we get that $f(tv) = e^{\alpha t}$ for some ϵ . Again $f(ty) = e^{\beta t}$ for some θ , since v is a multiple of y.

The case where f is not always positive never arises, for the same reasons as in Theorem 6. Thus Lemma 7 is proved.

PROOF OF THEOREM 1. Suppose f is unbounded over V. Let $u, v \in V$. By Lemma 7 there are reals α, β, γ such that for all t in Q, $f(tu) = e^{\alpha t}$, $f(tv) = e^{\beta t}$, $f(t(u + v)) = e^{\gamma t}$. From (1) we get

$$|e^{\gamma t} - e^{\alpha t}e^{\beta t}| \le \delta$$
 for all t in Q .

From the nature of exponentials it follows that $\gamma = \alpha + \beta$. Hence f(u + v) = f(u)f(v). It is then well known that $f(x) = \exp(l(x))$ for some Q-linear function l.

THEOREM 8. Suppose V is a real normed linear space, $\delta > 0$ and $f: V \to R$ satisfies (1). If f is bounded above on a nonvoid open subset of V, then either $|f(x)| \le \max(4, 4\delta)$ for all x in V or there exists a continuous linear $l: V \to R$ such that $f(x) = \exp(l(x))$ for all x in V.

THEOREM 9. Suppose $f: R^n \to R$, $\delta > 0$ and (1) holds for all x, y in R^n . If f is bounded above on a subset of R^n of positive Lebesgue measure, then either $|f(x)| \leq \max(4, 4\delta)$ for all x in R^n , or there is an n-tuple a such that $f(x) = \exp(a \cdot x)$ for all x in R^n .

These last two results follow easily form Theorem 1 and well-known properties of additive functions.

REMARK 10. In Theorems 1, 2, 5, 8 and 9 max(4, 4 δ) can be replaced by $\rho = (1 + \sqrt{1 + 4\delta})/2$. To see this, it suffices to show that if $|f(x)| > \rho$ for some x then f is unbounded. In that case |f(x)| > 1 and $f(x)^2 - |f(x)| > \delta$. Let $\Delta = \delta/(f(x)^2 - |f(x)|)$. Then $0 < \Delta < 1$ and we have from (3),

$$|f(nx) - f^{n}(x)| \le \delta(1 + |f(x)| + \cdots + f(x)^{n-2}).$$

Hence

$$|f(nx)/f(x)^n - 1| \le (\delta/f(x)^2) \sum_{k=0}^{\infty} |f(x)|^{-k} = \Delta$$

for n = 1, 2, 3, ... Since |f(x)| > 1, f(nx) is unbounded in n. Notice that if $f(x) = \rho$ for all x then (1) holds.

REFERENCES

1. D. H. Hyers, On the stability of the linear functional equation, Proc. Mat. Acad. Sci. U.S.A. 27 (1941), 222-224.

FACULTY OF MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO N2L 3G1