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THE STABILITY OF THE EQUATION/(x + y) = f(x)f(y)

JOHN BAKER1, J. LAWRENCE2 AND F. ZORZITTO3

ABSTRACT.lt is proved that if fis a function from a vector space to the real

numbers satisfying

\f(x+y)-f(x)f(y)\<8

for some fixed S and all x and y in the domain, then / is either bounded or

exponential.

In a  1941 paper D. H. Hyers proved that if f: E ^ E' is a mapping

between Banach spaces such that

\\f(x+y)-f(x)-f(y)\\<8

for some 8 > 0 and all x,y in F, then there is a unique mapping /: E -» E'

such that \\f(x) - l(x)\\ < 8 and l(x + y) = l(x) + l(y) for all x,y in E.

Hyers called this the stability of the linear equation

f(x+y)=f(x)+f(y).

J. Aczél and D. Kölzow have recently communicated to us a problem of E.

Lukacs. Namely, does the equation f(x + y) = f(x)f(y) have an anlaogous

stability theorem, whereby/is approximated by an exponential function? Our

main result is the following.

Theorem 1. Let V be a vector space over the rationals Q and let f:V —> R be

a real valued function such that

\f(x +y) - f(x)f(y)\ < 8 for some 8 > 0 and all x, y in V.        (1)

Then either \f(x)\ < max(4, 45), or there is a Q-linear function I: V -> F such

that f(x) = exp(/(x)) for all x in V.

We first prove the result when / is defined on the integers Z and takes

nonnegative real values, since this case captures the essence of Theorem 1.

Theorem 2. Let f: Z -» F + take nonnegative values and be such that the

functional approximation (1) holds for all x,y in Z. Then either f(x) <

max(4, 45) or f(x) = ax for some real number a > 0.
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We observe that if f(x) > max(4, 45) for some integer x, then x can be

taken to be nonnegative. If x were negative, then g(n) = f( — n) would define

a new function g still satisfying (1) and such that for some positive —x,

g( — x) > max(4, 45). In the subsequent Lemmas 3, 4 and the proof of

Theorem 2,/will denote a function exceeding max(4, 45) for some nonnega-

tive integer.

Lemma 3. If m, n are positive integers andf(m) > 2, then

\f(mn)/f(m)-l\<28/f2(m). (2)

Proof. We first use induction on n to show that

\f(nm) - f" (m)\ < (1 + f(m) + - - - + f-2 (m))8. (3)

For « = 1, (3) is trivial. Assuming (3) holds for some « and using (1) we get:

|/((«+ l)m)-/"+1(m)|

<|/((« + \)m) - f(nm)f(m)\ +\f(nm)f(m)-f"+*(m)\

< 8+f(m)(l +f(m) + ■ ■ ■ +f-2(m))8

= (1 + f(m) + • • • + /""' (m))8,   as desired.

Division by f"(m) in (3) and the assumption that/(m) > 2 yields (2).

Lemma 4. There exists a positive integer k such that for all integers x > k,

f(x) > max(4, 45).

Proof. Using the hypothesis on / we choose a positive integer m such that

f(m) > max(4, 45). An application of (1) or (2) shows that f(lm) increases

without bound as / increases through the positive integers.

Notice that/(x) t6 0 for all integers x. Indeed, \f(m) — f(m — x)f(x)\ <

8 together with/(x) = 0 would yield 45 < 5.

Choose / large enough so that for i = 1, 2, . . ., m — 1, f(i)f(lm) >

max(5, 55). If x > Im, then x = tm + i where i = 1, 2, . . ., m — 1 and t > I.

By (1) we have \f(x) - f(i)f(tm)\ < 5. Then

f(x) > f(i)f(tm) - 5 > max(5, 55 ) - 5 > max(4, 45 ).

We may therefore take k = Im.

Proof of Theorem 2. Let k be as in Lemma 3 and suppose x, y, z are

positive integers with x, y > k. Then, by Lemmas 1 and 2:

|/(xyz)/r(v)-l|<25//2(v)<l/2

and

\f(xyz)/r (x) - 1| < 28/f2(x) < 1/2.

Since f(xyz)/fxz (y) and f(xyz)/fyz (x) are both bounded and bounded away

from 0 for all z, their quotients (f (x)/fx (y))z and (fx(y)/f(x))z axe
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bounded for all z. Thus

fx(y) = f(x)    for all x,y >k. (4)

Let a = (f(k))x/k. By (4),/(jc) = ax for all x > k.

Now suppose w is any integer and choose x such that x > k and x + w >

k. Then

|/(x + w)-/(*)/(w)|<«,

or   |a*+,v - axf(w)\ < 5;   so  that  ax\aw - f(w)\ < 5.   Letting  x -> oo   it

follows that/(w) = aw. This completes the proof of Theorem 2.

The next two results generalize Theorem 2.

Theorem 5. Iff: Z -> F satisfies (1) (èwi ¿s allowed to take negative values),

then either \f(x)\ < max(4, 45) or there is a real b such that f(x) = bx,for all

x in Z.

Proof. Since/satisfies (1), so does |/|: Z-* R+, due to the inequalities

| \f(x+y)\ -\f(x)\ |/(7)| \<\f(x+y)-f(x)f(y)\ < 5.

If |/| exceeds max(4, 45) at some integer, deduce from Theorem 2 that

\f(x)\ = ax, for a = |/(1)| > 0. By further applying (1) we can show that

/(*) = (f(W, for all x in Z.

Theorem 6. Let f: Q —> R satisfy (1) for all rationals x, y and some 5 > 0.

Then either \f(x)\ < max(4, 48),orf(x) = eyx for some real number y, and all

rational x.

Proof. Assume/ > 0 for the moment. Also suppose that there is a rational

r such that f(r) > max(4, 45). As in Lemma 4,f(nr) increases without bound

when the integer n tends to + oo. Because the rationals nr take integral values

infinitely often, / is unbounded over Z. By Theorem 5 f(m) = am where

a = /(l) > 0 and m is any integer.

Let x = p/q be any rational. The function g: Z —> R defined by g(n) =

f(nx) is unbounded and satisfies (1). By Theorem 5, g(n) — b" for some b. In

particular: b = g(\) = f(x) and bq = g(q) = f(qx) = f(p) = ap. This yields

f(x) = ax, orf(x) = eyx where a = ey.

The case where / > 0 fails and |/| exceeds max(4, 45) at some rational

does not arise when Q is the domain off. This can be seen by considering the

function |/|, which still satisfies (1). Then |/(x)| = ax or f(x) = ± ax. An

application of (1) and the fact every rational x is even will show that the

negative sign cannot occur for any x.

Lemma 7. Let f: V ̂  R be as in Theorem 1. Iff(x) > max(4, 45) at some x

in V, then for any y in V there is a 0 in R such that f(ty) = e9' for all t in Q.

Proof. Assume for the moment / > 0. We first observe that if u E V and

f(u) > max(4, 45), then f(tu) = e°" for some real a > 0 and any rational t.

Simply consider g: Q-+ R given by g(t) = f(tu). The approximation (1)
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holds for g and since g(l) > max(4, 45), g is unbounded as noted in Lemma

4. Thus g(t) = e°", due to Theorem 6. That a > 0 follows because e" >

max(4, 45).

For a fixed y in V either/(fy) = 1 for all rational t, f(z) > 1, or f(z) < 1

for some rational multiple z = ky.

In the first case take y = 0.

Now assume f(z) > 1 for some z = ky. For the given x such that f(x) >

max(4, 45) and any rational / we have/(/x) = e°" for some real a > 0. Then

we get from (1):

\f(tx + z)- e"'f(z)\ < 5. (5)

From (5) we get that f(tx + z) is unbounded over all / in Q. Because

f(z) > \,f(tx + z) > e°" for all sufficiently large t. Hence there is a rational

multiple u = jx of x such that f(u + z) > f(u) > max(4, 45). Applying our

first observation we get y > ß > 0 such that for all rational /:

f(t(u + z)) = e* > eß' =f(tu).

From (1) we deduce that for all t

eßyy-ß)> -f(tz)\ =|e1" - eß'f(tz)\ < 8.

Thus f(tz) is unbounded over all t in Q. From Theorem 5 one sees that

f(tz) = eet for some real e and all t in Q. Since z is a multiple of y,f(ty) = e9'

for some real 9 and all t in Q.

The final case is that/(z) < 1. Here (5) still applies,/(rx + z) is unboun-

ded over t in Q and f(tx + z) < e°" for all sufficiently large t. (Note/never

vanishes, as in Lemma 4.) Hence there is a vector u m V such that

/(«) > /(" + z) > max(4, 45). Let w = u + z, v = -z. Then f(w + v) >

f(v) > max(4, 45). As in the case above we get that/(fu) = e" for some e.

Again/(rv) = e9' for some 9, since v is a multiple of v.

The case where/is not always positive never arises, for the same reasons as

in Theorem 6. Thus Lemma 7 is proved.

Proof of Theorem 1. Suppose / is unbounded over V. Let u,v G V. By

Lemma 7 there are reals a, ß, y such that for all t in Q, f(tu) = e"',

f(tv) = eß',f(t(u + v)) = ey'. From (1) we get

\e°" - ea'eß'\< 8   for all tin Q.

From the nature of exponentials it follows that y = a + ß. Hence /(« + v)

= f(u)f(v). It is then well known that/(x) = exp(/(x)) for some g-linear

function /.

Theorem 8. Suppose V is a real normed linear space, 5 > 0 and f:V^>R

satisfies (1). If f is bounded above on a nonvoid open subset of V, then either

\f(x)\ < max(4, 48) for all x in V or there exists a continuous linear I: V ̂ * R

such that f(x) = exp(l(x))for all x in V.
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Theorem 9. Suppose f: R"^>R,8 > 0 and (1) holds for all x,y in R". Iff is

bounded above on a subset of R" of positive Lebesgue measure, then either

\f(x)\ < max(4, 45) for all x in R", or there is an n-tuple a such that

f(x) = exp(a • x) for all x in R".

These last two results follow easily form Theorem 1 and well-known

properties of additive functions.

Remark 10. In Theorems 1, 2, 5, 8 and 9 max(4, 45) can be replaced by

p = (1 + Vl + 45 )/2. To see this, it suffices to show that if \f(x)\ > p for

some x then/is unbounded. In that case \f(x)\ > 1 and/(x)2 - |/(x)| > 5.

Let A = 8/(fix)2 - \f(x)\). Then 0 < A < 1 and we have from (3),

\f(nx)-f(x)\ < 5(1 + |/(x)| + • • • +/ÍVT2).

Hence
CO

\f(nx)/f(x)"-\\<(8/f(x)2)  2   \f(x)\~k=à
k = 0

for n = 1, 2, 3, ... . Since \f(x)\ > \,f(nx) is unbounded in n.

Notice that if f(x) = p for all x then (1) holds.
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