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THE STABILITY OF THE EQUATION f(x + y) = f(x)f(»)
JOHN BAKER', J. LAWRENCE? AND F. ZORZITTO®

ABSTRACT.It is proved that if f is a function from a vector space to the real
numbers satisfying

[fx+y) = f(fO) < 8
for some fixed § and all x and y in the domain, then f is either bounded or
exponential.

In a 1941 paper D. H. Hyers proved that if f: E— E’ is a mapping
between Banach spaces such that

IfCx +y) = f(x) = f)| < &
for some § > 0 and all x, y in E, then there is a unique mapping /: E — E’

such that || f(x) — I/(x)|| < 6 and I(x + y) = I(x) + I(y) for all x,y in E.
Hyers called this the stability of the linear equation

f(x +y) =f(x) + f(»).

J. Aczél and D. Kolzow have recently communicated to us a problem of E.
Lukacs. Namely, does the equation f(x + y) = f(x)f(y) have an anlaogous
stability theorem, whereby f is approximated by an exponential function? Our
main result is the following,

THEOREM 1. Let V be a vector space over the rationals Q and let f:V — R be
a real valued function such that

|[f(x +y) = f(x)f(y)| < 8 forsomed >O0andall x,yinV. (1)

Then either | f(x)| < max(4, 43), or there is a Q-linear function I: V — R such
that f(x) = exp(I(x)) for all x in V.

We first prove the result when f is defined on the integers Z and takes
nonnegative real values, since this case captures the essence of Theorem 1.

THEOREM 2. Let f: Z — R™* take nonnegative values and be such that the
Sunctional approximation (1) holds for all x,y in Z. Then either f(x) <
max(4, 46) or f(x) = a* for some real number a > 0.
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We observe that if f(x) > max(4, 46) for some integer x, then x can be
taken to be nonnegative. If x were negative, then g(n) = f(— n) would define
a new function g still satisfying (1) and such that for some positive —x,
g(— x) > max(4, 48). In the subsequent Lemmas 3, 4 and the proof of
Theorem 2, f will denote a function exceeding max(4, 46) for some nonnega-
tive integer.

LEMMA 3. If m, n are positive integers and f(m) > 2, then

| f(mn)/f" (m) — 1| < 28/f*(m). @
ProoF. We first use induction on » to show that
|f(nm) - f" (m)| < (1 + f(m)+ - - - + fr-2 (m))8. 3)

For n = 1, (3) is trivial. Assuming (3) holds for some n and using (1) we get:

|f((n + D)m) = f*! (m)|
<|f((n + D)m) = f(nm) f(m)| +|f(nm)f(m) = f**! (m)|
<8+ f(m) (1 + f(m) + - - + [ (m))8
=(1+f(m)+--- +f"""(m))s, asdesired.

Division by f"(m) in (3) and the assumption that f(m) > 2 yields (2).

LEMMA 4. There exists a positive integer k such that for all integers x > k,
f(x) > max(4, 46).

Proofr. Using the hypothesis on f we choose a positive integer m such that
f(m) > max(4, 48). An application of (1) or (2) shows that f(/m) increases
without bound as / increases through the positive integers.

Notice that f(x) # 0 for all integers x. Indeed, |f(m) — f(m — x) f(x)| <
8 together with f(x) = 0 would yield 46 < é.

Choose ! large enough so that for i=1,2,...,m—1, f()f(im) >
max(5, 58). If x > Im,thenx = tm + iwherei =1,2,...,m—landt > L
By (1) we have | f(x) — f(i)f(tm)| < 6. Then

f(x) > f(i)f(tm) — & > max(5, 56) — & > max(4, 45).

We may therefore take k = Im.
PROOF OF THEOREM 2. Let k be as in Lemma 3 and suppose x, y, z are
positive integers with x, y > k. Then, by Lemmas 1 and 2:

|f(o2) /1% (») — 1] <28/f*(y) < 1/2
and

|f(z)/P7 (x) = 1|< 28/f*(x) < 1/2.
Since f(xyz)/f**(y) and f(xyz)/f*(x) are both bounded and bounded away
from O for all z, their quotients (f(x)/f*(y)y and (f*(y)/f (x)y are
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bounded for all z. Thus
f*(y) = £(x) forallx,y > k. @)
Let a = (f(k))/*. By (4), f(x) = a* forall x > k.

Now suppose w is any integer and choose x such that x > kand x + w >
k. Then

1£(x + w) = F(x)f(w)] < 8,
or |a**¥ — a*f(w)| < &; so that a*|a” — f(w)| < 8. Letting x —» o0 it
follows that f(w) = a*. This completes the proof of Theorem 2.
The next two results generalize Theorem 2.

THEOREM 5. If f: Z — R satisfies (1) (but is allowed to take negative values),
then either | f(x)| < max(4, 40) or there is a real b such that f(x) = b*, for all
xinZ.

PROOF. Since f satisfies (1), so does | f|: Z — R ™*, due to the inequalities

[ 1fCx + )| =[£G SO | <|f(x +2) = f()f)] < 8

If |f| exceeds max(4, 46) at some integer, deduce from Theorem 2 that

|f(x)| = a*, for a = |f(1)] > 0. By further applying (1) we can show that
f(x) = (f(1)), for all x in Z.

THEOREM 6. Let f: Q — R satisfy (1) for all rationals x,y and some & > 0.
Then either | f(x)| < max(4, 48),or f(x) = e for some real number v, and all
rational x.

PROOF. Assume f > 0 for the moment. Also suppose that there is a rational
r such that f(r) > max(4, 48). As in Lemma 4, f(nr) increases without bound
when the integer n tends to + co. Because the rationals nr take integral values
infinitely often, f is unbounded over Z. By Theorem 5 f(m) = a™ where
a = f(1) > 0 and m is any integer.

Let x = p/q be any rational. The function g: Z — R defined by g(n) =
f(nx) is unbounded and satisfies (1). By Theorem 5, g(n) = b" for some b. In
particular: b = g(1) = f(x) and b? = g(q) = f(gx) = f(p) = a*. This yields
f(x) = a*, or f(x) = " wherea = e”.

The case where f > 0 fails and |f| exceeds max(4, 45) at some rational
does not arise when Q is the domain of f. This can be seen by considering the
function |f], which still satisfies (1). Then |f(x)| = a* or f(x) = = a*. An
application of (1) and the fact every rational x is even will show that the
negative sign cannot occur for any x.

LEMMA 7. Let f: V — R be as in Theorem 1. If f(x) > max(4, 46) at some x
in V, then for any y in V there is a 0 in R such that f(ty) = e* for all t in Q.

PROOF. Assume for the moment f > 0. We first observe that if ¥ € V and
f(u) > max(4, 48), then f(tu) = e* for some real a > 0 and any rational ¢.
Simply consider g: Q@ — R given by g(f) = f(tu). The approximation (1)
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holds for g and since g(1) > max(4, 48), g is unbounded as noted in Lemma
4. Thus g(?) = e*, due to Theorem 6. That a > 0 follows because e* >
max(4, 48).

For a fixed y in V either f(zy) = 1 for all rational ¢, f(z) > 1, or f(z) < 1
for some rational multiple z = ky.

In the first case take y = 0.

Now assume f(z) > 1 for some z = ky. For the given x such that f(x) >
max(4, 48) and any rational ¢ we have f(¢x) = e™ for some real a > 0. Then
we get from (1):

| f(tx + 2) — e*f(2)| < &. 3)

From (5) we get that f(tx + z) is unbounded over all # in Q. Because
f(2) > 1, f(tx + z) > e* for all sufficiently large ¢. Hence there is a rational
multiple # = jx of x such that f(u + z) > f(x) > max(4, 46). Applying our
first observation we get y > 8 > 0 such that for all rational ¢:

f(t(u + 2)) = e > e = f(tu).
From (1) we deduce that for all ¢
eP|eV B — f(1z)| =e™ — ePf(1z)| < 8.

Thus f(¢z) is unbounded over all ¢ in Q. From Theorem 5 one sees that
f(tz) = e* for some real ¢ and all # in Q. Since z is a multiple of y, f(ty) = %
for some real # and all 7 in Q.

The final case is that f(z) < 1. Here (5) still applies, f(tx + z) is unboun-
ded over ¢ in Q and f(tx + z) < e™ for all sufficiently large ¢. (Note f never
vanishes, as in Lemma 4.) Hence there is a vector 4 in ¥ such that
S(u) > f(u + z) > max(4, 46). Let w=u + z, v = —z. Then f(w + v) >
f(v) > max(4, 48). As in the case above we get that f(tv) = e* for some e.
Again f(ty) = e* for some 0, since v is a multiple of y.

The case where f is not always positive never arises, for the same reasons as
in Theorem 6. Thus Lemma 7 is proved.

PrOOF OF THEOREM 1. Suppose f is unbounded over V. Let u, v € V. By
Lemma 7 there are reals a, 8,y such that for all ¢ in Q, f(tu) = e,
f(tv) = e, f(t(u + v)) = e. From (1) we get

le™ — e¥e®|< & foralltin Q.

From the nature of exponentials it follows that y = a + S. Hence f(u + v)
= f(u)f(v). It is then well known that f(x) = exp(/(x)) for some Q-linear
function /.

THEOREM 8. Suppose V is a real normed linear space, 8 > 0 and f: V > R
satisfies (1). If f is bounded above on a nonvoid open subset of V, then either
| f(x)] < max(4, 48) for all x in V or there exists a continuous linear I: V — R
such that f(x) = exp(I/(x)) for all x in V.
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THEOREM 9. Suppose f: R" — R, § > 0 and (1) holds for all x, y in R". If f is
bounded above on a subset of R" of positive Lebesgue measure, then either
| f(x)| < max(4, 48) for all x in R", or there is an n-tuple a such that
f(x) = exp(a - x) for all x in R".

These last two results follow easily form Theorem 1 and well-known
properties of additive functions.

REMARK 10. In Theorems 1, 2, 5, 8 and 9 max(4, 4) can be replaced by
p=(+ V1 +48)/2. To see this, it suffices to show that if | f(x)| > p for
some x then f is unbounded. In that case | f(x)| > 1 and f(x)* — | f(x)| > &.
Let A = 8/(f(x)*> — | f(x)|)- Then 0 < A < 1 and we have from (3),

[f(nx) = f* (x)] < 8(1+|f()] + -+ + f(x)").

Hence
|f(nx)/f(x)" = 1] < (8/f(x)’) éo |f(x)| 7= A

forn=1,2,3,....Since|f(x)| > 1, f(nx) is unbounded in n.
Notice that if f(x) = p for all x then (1) holds.
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