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A FIXED POINT THEOREM FOR CERTAIN OPERATOR

VALUED MAPS

D. R. BROWN AND M. J. O'MALLEY1

Abstract. Let if be a real Hubert space, and let Bt(H) denote the space of

symmetric, bounded operators on H which have numerical range in [0, 1],

topologized by the strong operator topology, and let L be a strongly

continuous function on H into B,(H). In this paper, methods are given to

locate all z £ H which are fixed points of L in the sense that L(z)z = z.

In particular, if w £ H and if a and ß are fixed positive rational numbers

with a £ [ i, oo), a decreasing sequence of elements of B¡(H) is recursively

defined, and converges to Q £ Bt(H). If a > i, then Q is idempotent and

z = Qw is a fixed point of L, and if a = \, ß > {, then z = Q^w is a fixed

point of L.

1. Introduction. Let H be a real Hubert space, and let BX(H) denote the

space of symmetric, bounded operators on H which have numerical range in

[0, 1], topologized by the strong operator topology (that is, the topology of

point-wise convergence). It is well known [3], that if T E BX(H), then there

exists a unique S E BX(H) such that S2 = F. We represent S by F1/2. The

following theorem is due to John Neuberger [2].

Theorem A. Suppose w E H, P is an orthogonal projection on H, and L is a

(strongly) continuous function from H into BX(H). Let Q0 = P, and set Q„ + x =

Qxn/2L(Qx/2w)Ql'2, n = 0, 1, 2,_Then {ßX-o converges to an element

Q E Bx(H)for which z = Qx/2w is a fixedpoint of P and a fixed point of L in

the sense that L(z)z = z.

In this paper, under the same hypotheses as Theorem A, we develop a

family of Neuberger-like results to find points z E H satisfying L(z)z = z

and P(z) = z. This family includes Neuberger's theorem and has the addi-

tional property that "most" of the sequences {Qn} converge to idempotent

elements of BX(H). The limit operator of Theorem A need not be idempotent.

Such theorems as those above not only play a valuable role in the search

for numerical solutions of partial differential equations, but are also useful, in

the finite-dimensional case, in attacking the problem of determining the

nonzero fixed points of a function <b: R" -»• F". In particular, if x E R" -

{0), then x is a fixed point of <¡> if and only if A(x)x = x, where A is the
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matrix valued function defined by A(x) = (||x||-2) • <b(x) • (xT), where <b(x) •

(x T) is the matrix product of the column vector <}>(x) with the row vector x T.

In fact, it follows that (/>(■*) = x, x ¥= 0, if and only if A (x) is a nonzero

symmetric idempotent.2

2. Fixed points of L(z). Recall that an operator is positive if {Ax, x) > 0

for all x E H, where < , ) is the inner product of H. We presume familiarity

with the standard properties of positive operators as set forth, for example, in

[3]. By invocation of the spectral theorem, or, alternately, by a sequential

construction, it is possible to provide, for any T E BX(H) and any positive

integer «, a unique operator Tx/n E BX(H) such that (Tx/n)n = T. This

notion extends immediately to arbitrary positive rational powers of T by

defining Tr/s = (Tx/s)r. Moreover, by again appealing to the spectral

theorem, it follows that if {Qj} is a sequence in BX(H) converging strongly to

Q, and / is an arbitrary positive rational number, then [QJ] converges

strongly to Q'. Finally, recall that the usual quasi-order defined for positive

operators by A < B if and only if B - A is positive satisfies an additional

anti-symmetry condition, to wit: if A and B axe positive and commute, then

A < B and B < A forces A = B.

Lemma 1. Let Q E BX(H) and let a be a positive rational number other than

I. If Q" = Q, then Q = Q2; that is, Q is an idempotent.

Proof. Let a = r/s; the presumed equality is equivalent to Qr = Qs.

Without loss of generality, assume r < s and that r is the minimal positive

power of Q which reoccurs in the sequence {Q"). From the fact that powers

of an operator descend in the quasi-order mentioned above, together with the

limited anti-symmetry of this relation, it follows that Q' = Qr for all integral

t between r and s. From Qr = Qr+X, it follows that Q' = Qr for all t > r.lfr

is odd, then (@(r+1)/2)2 = Qr+X = Q2r = (Qr)2. By uniqueness of square

roots, Qr = Q(r+1)/2, whence r = (r + l)/2 and r = 1. If r is even, then

(Qr/2)2 = Qr = (Qr)2> whence r = r/2, which is impossible for positive r.

Thus/- = 1 and(g = Q2-

We are now ready to prove our

Theorem 2. Let w E H, let P be an orthogonal projection on H, and let L:

H -> BX(H) be strongly continuous. Let a, ß be positive rational numbers with

a E [ \, oo). Set Q0 = P, and let Qn+X = Ô^(Ô>)ô„a. « = 0, 1, 2, ... .

Then {f2n}~-o 's a decreasing sequence oj elements of BX(H) which converge to

an element Q E BX(H) such that

(1) if a > \, then Q is idempotent and z = Qw satisfies L(z)z = z, and

Pz = z, and

2 It is a pleasure to record our indebtedness to H. P. Decell for the remark immediately above,

and to several other members of the University of Houston Mathematics Department, particu-

larly Phillip Walker, for helpful conversations regarding the preparation of this paper.
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(2) if a =\ and ß >\, then z = ß^w satisfies L(z)z = z and Pz = z.

Proof. Fix a > \ and ß > 0. Since ß0 = F E BX(H) and the range of L

is in BX(H), it follows inductively that Q„ E BX(H) for all n. Since 2a > 1,

Q2" < Qn; moreover, <(ß„2" - Qn+X)x, x} = <(ß„2" - Q„aL(Qfr)Q„a)x, x)

= <ßn«(/ - L(Q„ßw))Qnax, x) = <(/ - L(ß»)ß>, ß». Thus, since / -

L(Qnw) > °>il follows that Qn+X < ß„2a. Hence we have

ß„ + ,   <   Qn""  <   Qn, n- 0,1,2,.... (»)

In particular, the sequence ( ß„} is monotonically decreasing in the (operator)

interval from 0 to F Thus we have by [3, p. 318] that the sequence {ß„}

converges strongly to an element ß E BX(H), whence {ß„a} converges to ß"

and {Qß) converges to Qß. Since L is continuous and operator multiplication

is jointly continuous in the strong topology on BX(H), we have by uniqueness

of limits that ß = QaL(Qßw)Qa. Also, from (*) and the closed graph of the

relation <, we have ß < Q2a < Q. Thus, since ß and ß2a commute, we

have that ß = ß2°. Moreover, since F = ß0, we have PQn = ß„, whence

FQy = Qy for all positive rational y.

(i) Suppose a>j. By Lemma 1, Q = Q2, from which it follows that

ß = ßy for all positive rational y, and, in particular, ß = QL(Qw)Q.

Let z = Qw, and fix x E H. Then

<ßx, x> = <ßL(z)ßx, x) = <L(z)ßx, ßx>,

and since ß2 = ß, it follows that

0 = (Qx, Qx) - (L(z)Qx, Qx) = <(/ - L(z))Qx, Qx).

Therefore, since / - L(z) and hence (/ - L(z))x/2 belong to BX(H), we have

that ß = L(z)Q. In particular, z = Qw = L(z)Qw = L(z)z.

(ii) Suppose a = 2-,ß>{-.Letz = ß^tv; then ß = Qx/2L(z)Qx'2 from

which

(Qx,x) = (ß'/^ziß'/^x) = <L(z)ß'/2x,ß1/2x>.

Since <ßx, x> = <ß 1/2x, ß 1/2x> also, we have

0 = <ß'/2x - L(z)Qx'2x, Qx'2x) = ((/ - L(z))Qx'2x, Qx'2x).

Now, as in (i), it follows that ß1/2 = L(z)Q1/2. In particular,

z = Qßw = Qx':LQß-xl2w = L(z)ß'/2ß^-1/2w = L(z)Qßw = L(z)z.

That Pz = z in both cases is obvious from the fact that FßY = ßY for all

positive rational y. This completes the proof.

Given a nonzero element z E H such that L(z)z = z, it is reasonable to

ask if our sequences are able to produce z. We note now that, by proper

selection of w and F, z is attainable from each of our sequences. Specifically,

if a and ß are fixed as in the theorem, then let w = z and let F be the

orthogonal projection of H onto the line through z. From the construction of

the sequence {Q„), Qx = PL(z)P, whence ß, = P. It follows immediately
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that Qn = P for all n and thus Q = P. Hence z = Qw = Pw (or z = Qßw =

Pßw = Pw) is the fixed point yielded by our theorem.

While it is not reasonable to expect the practitioner to guess P so

accurately, these remarks do attach the virtue of theoretical completeness to

these processes.

3. Examples. (1) Suppose that a = \ and that y,5 G [ \, oo) such that

neither of y, 5 is an integral multiple of the other. We show that for fixed

w G H and P, the Q and z obtained by using y for ß need not be the same as

those obtained by using 5 for ß. Moreover, the limit operator Q in this case

need not be an indempotent, although it can be one. Assume 5 < y. Let k be

the least positive integer such that y < k8. Note 2 < k and (k — 1)5 < y.

Let a be any number in the interval (0, 1). Then akS < ay < a(k~X)S < as.

Define L: R -+ [0, 1] by

1, x < oY,

L(x) = \ [(1 - a)/ (a' - a(k~x)s)] • (x - a*) + 1,    a* < x < a(k~x)s,

.a, aik~x)s < x.

Set P = I, w = 1. Using y for ß in the theorem yields Q0 = 1 and Qx = a.

Inductively, Qn = a, so that Q = a. Hence z = (21'w = aYl = a1'in this

case. On the other hand, using 5 for ß gives Q0 = 1, Qx = a, but Q2 =

a2, . . ., Qk = ak. Moreover, Qn = ak for n > k, hence Q = ak and z = Qsw

= akS ■ 1 = aks. By the choices of a and k, the exponents y and 5 yield

distinct operators and distinct fixed points. Moreover, neither of the limit

operators determined by y and 5 is idempotent.

(2) Suppose that a > \, so that any limiting Q obtained through the

theorem is idempotent. We show for fixed w E H and P, that the resulting

limit idempotents may vary with the choice of ß, as may the fixed points

determined in this manner. To this end, let a = 1 in the theorem. Let L:

R3 -» BX(R3) be as follows: all image matrices are diagonal, where

[x    0    0
0     v    0

.0     0

will be represented as diag(x, v, z). We require

L(\, 1, 1) = diag(l, \,\),       L(\, ¿,l) = diag(l, \,\),

1(1, i,l) = diag(¿, \,\),       L(l,v,z) = diag(l,v,z)

for (v, z) G [0, \\ X [0, \], and L(x, y, 1) = diag(x, v, 1) for

(x,y) G [0, j] X [0, j]. The extension theorem of Tietze (cf. [1]) permits a

continuous extension of L to all of R3 into the diagonal matrices whose

entries are in the interval [0, 1]. Let P = I3, the identity operator, and let w be

the vector (I, 1, 1). If ß = j, a brief examination of the defining sequence of

Q„'s in Theorem 2 shows that the limit idempotent Q = diag(l, 0, 0), and
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z = Qw = (1, 0, 0). On the other hand, if ß = 1, then limit ß = diag(0, 0, 1),

and z = (0, 0, 1).

(3) With notation as in (2), suppose ß = 1 is fixed. We show for fixed

w E H and F, that the resulting limit idempotents may vary with a, as may

the fixed points determined in this manner. Letting F = I3 and w = (1, 1, 1)

as in (2), we require this time that

L(l, 1, 1) = L(1, ±,l) = diag(l, i,l),

L(l, i, l) = L(l,0,0) = diag(l,0,0),

L(\, ¿,1) = L(0,0, l) = diag(0,0, 1).

Extending as before, we have a continuous L defined on F3 into the diagonal

matrices with entries in [0, 1]. For any choice of a, ß, = diag(l, \, 1). If

a = 1, Q2 = diag(l, \, 1), ß3 = Qn = ß = diag(l, 0, 0), z = (1, 0, 0). On the

other hand, if a = 2, then Q2 = diag(l, ¿, 1), Q3 = Qn = ß = diag(0, 0, 1),

2 = (0, 0, 1).

It is easy to see that a slightly more complicated definition of L would yield

a single example incorporating the features of all three prior illustrations.
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