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ON A SUPERLINEAR ELLIPTIC BOUNDARY

VALUE PROBLEM AT RESONANCE

P. J. McKENNA

Abstract. Semilinear partial differential equations of the type —Au — X2u

+ e" — h are studied and existence and multiplicity results obtained.

1. Introduction. Many recent papers have studied the problem

Lu + f(u) = h(x)       inO,

Bu = 0       on 30, (1)

where L is a nonnegative elliptic operator with kernel and / is a function

satisfying /( + oo) > /( - oo) without growth restrictions. For example, if

f(u) = eu then necessary and sufficient conditions on h axe known for

equation (1) to have a solution [5]. An obvious next step is to examine the

case where L is no longer nonnegative but is only negative on a one-dimen-

sional space. We shall study, with fairly general methods, the problem

- au - \2u + e" = h(x)       in 0,

du/dn = 0       on 90, (2)

where X2 is the first nonzero eigenvalue of -A with Neumann boundary

conditions. If instead of e" we had a bounded nonlinearity f(u), then [4]

shows that the existence of solutions of (2) is dependent on the projection of h

onto the eigenspace corresponding to À2. The surprising result here is that the

existence or nonexistence of solutions of (2) is dependent also on the

projection of « onto the kernel of the Laplacian.

2. A typical example. We shall consider the problem

- Am - X2u + eu = hx(x) + t       in ñ,

3m/3« = 0       on 30 (3)

where /«, = 0, hx E L°°(Q). In [5] it was shown that this equation need not

have a solution and, for completeness, we include the example here. Rewrite

problem (3) as — Au + f(u) = hx(x) + t and observe that inf/(x) =

inf(-A2* + ex) = N > -oo. Thus if / < N, by projection onto the kernel

vector 1, we have N\il\ < //(«) = ft < N\Q\ which contradicts the existence

of a solution u. We now prove a complementary result.
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Theorem. Given any hx E F°°, }hx = 0, there exists a number y so that

problem (3) has at least two solutions if t > y, at least one solution if t = y, and

has no solutions if t < y.

Proof. First, by an application of the maximum principle, we may con-

clude that if the number M satisfies -X2M + eM > [[h^ + \t\, then any

solution u of (3) satisfies u < M almost everywhere.

We now introduce the Nemytsky operator N in L2 by D(N) = {u E L2\u

is bounded above a.e. in ß}, Nu = e" and let Lu = -Aw — \2u. We assume,

without loss of generality, that |ß| = 1. Thus, the operator F defined by

Pu = fau dx is the orthogonal projection on the vector 1.

We now use the alternative method [1] to split the equation

Lu + Nu = hx + t (4)

into the equivalent system of equations

Lux + (I- P)N(c + «,) = hx, (5a)

-X2c + PN(c + ux) = t, (5b)

where w, E (/ - P)L2.

For each real number c, let Tc be the operator defined by

Tcux = Lux + (/ - P)N(c + ux)

so equation (5a) becomes Tcux = hx. We shall first show that this equation is

uniquely solvable.

For each M > 0, we introduce the C ' cut-off function

= Í e*'       x < M'
8m{x)      j eM,x - m) + eM,       x > M,

and let NM be the associated Nemytsky operator defined on all of L2.

Corresponding to equation (5a) we have the cut-off equation

Lux + (I- P)NM(c + ux) = hx. (5a„)

If we define the operator TCM in (1>X by

TcMux = Lux + (I-P)Nu(c + ux),

then equation (5aw) becomes T^ux = hx. Notice that Nu is everywhere

defined, bounded and Lipschitzian as a map from L2(fi) to L2(ß). Further-

more, NM is strictly monotone and thus the map ux-+(I - P)NM(c + ux) is

monotone and Lipschitzian for fixed c on (I - P)L2. Since L(I - P) is

maximal monotone, the map TCM is maximal monotone on (/ - P)L2. We

now turn to the task of showing that TCM is coercive on (/ - P)L2.

First, assuming that M > \c\, a routine calculation shows that

(TcMux,ux)>(^ux,ux)       for all«,, (6)

and hence, by establishing coercive estimates for T}c\ we obtain coercive

estimates for TCM which depend on c but are independent of M. We shall use the



and

it follows that
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following lemma, whose proof we postpone to the end of the theorem.

Lemma. There exists y0 > 0, Rc > 0 so that

i^ux ux)
'■'■       > Yo||",||1/3      for all ||ti,|| > Rc (7)
Fill

where y0 is independent of c and Rc depends continuously on c.

From (6) and (7) it is clear that (5aw) has a unique solution m, satisfying

||Ml||<max{/?c, UMIVyo}- (8)

Since

gM(c + x) < ec + xgM(x + c) (9)

(Lux, «,) +fuxgM(c + «,) = («„ u,),

fgM(c + ux)<eC+\\hx\\\\ux\\<Kc (10)

by (8), where Kc depends continuously on c but is independent of M. If now

the constant M is chosen so that M > \c\ and

-X2M + eM>\\hx\\ao+X2\c\ + Kc, (11)

then u = c + ux is a solution of

- Aw - X2m + gM(u) = hx + f g(c + ux) dx - X2c

and by the maximum principle and (11) we have u < M. Thus ux is also a

solution of equation (5a). This shows that for each real number c, equation

(5a) has a unique solution «, = t(c) and the solution m, is independent on the

"cut-off" parameter M.

We now show that N(c + t(c)) is continuously dependent on c. Let <p2

span the eigenspace corresponding to the eigenvalue X2. Write t(c) = t,(c) +

t2(c) where t,(c) = a<p2 and t2(c)J_{1, <¡>2}. Let c„ -» c0. It follows from the

boundedness of the set {cn, c0}™=x and the estimate (7) that [T(cn)} is

bounded in L2. First we show that t2(c) is a continuous function of c. Indeed,

for some ß we have

ß\\r2(cn) - t2(c0)\\2 < (L(r2(c„) - r2(c0)), r2(cn) - r2(c0))

= -(N(cn + r(c)) - yV(c0 + r(c0)), r2(cn) - t2(c0))

< -(N(cn + r(c„)) - N(c0 + r(c0)),(cn + t(c„)) - (c0 + r(c0)))

+ 2p\\cn - c0\\.
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Here we have used the facts that

(N(cn + t(c„)), <b2) = (N(c0 + t(cq)), <b2) = (hx, <¡>2),

so that (N(cn + t(c„)) - N(c0 + r(c0)), rx(c„) - rx(c0)) - 0, and that ||A(c„

+ T(£'n))ll < P f°r some p. Since the first term on the right is negative and the

second term is tending to zero, we conclude that t2(c„) —» t2(c0).

Since the tx(c„) are bounded, it follows that there exists a convergent

subsequence t,(c„) —> x. Now observe that by taking limits, we have

(N(C0 + X + T2(C0)) - N(C0 + TX(C0) + T2(C0)), X - T,(C0)) = 0.

However (N (y) - N(z),y - z) = 0 implies N(y) = N(z), and thus we have

that N(c0 + x + t2(c0)) = N(c0 + t,(c0) + t2(c0)). Therefore N(c + r(c)) is

a continuous function of c.

Now we must show that for suitable choices of /, equation (5b) which takes

the form

4>(c) = -X2c + [n(c + t(c)) dx = /, (12)

is satisfied. Observe that as c -^ — oo, 0(c) -» + oo. Also observe that by the

earlier counterexample limc^+00 0(c) = m > — oo. Suppose m < + oo. Then

we can find a sequence c„ such that cn —» + oo and $(c„) —> m, which

contradicts the a priori bound by the maximum principle on solutions

c + t(c). Thus as c -» + oo, 0(c) -» + oo. Taking y = minc6R 0(c) we have

shown that (12), and thus (3) has at least two solutions if t > y, at least one

solution if / = y and no solutions if t < y. Thus, when we have proved the

coercive lemma, the proof is complete.

Proof of Lemma. We shall write ux = d<b2 + u2 and establish (7) for two

separate cases.

Case 1. \d\2/3 < \\u2\\. In this case we have

||«l||2=K|2+||«2||2<||"2||3 + ll"2||2<2ll»2||3'

(LMl,Ml)>(A3-A2)||M2||2>0,

(A|c|(c + ux), ux) = (A|c|(c + ux) - NM(c), ux) + (NM(c), ux)

>0-|JVkl(c)|||«1||>-e>Ij|,

and hence,

(7*W«,)\(X3-A2)„   ||1/3      .       .     _ n«
M^ll > 22/3 ll">ll       - e f°r a11 "I" (13)
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Case 2. \\u2\\ < \d\2/3. Here we have

||«,||2<|¿|2+|¿|4/3<2|¿|2,

(NM(c + ux), ux) = (d$2, NM(c + ux)) + (u2, NM(c + ux))

= (<% N^(d<b2)) + (d<¡>2, NM(c + ux) - NW[(d<b2))

+ (u2, NM(c)) + (u2, NM(c + ux) - NW\(c))

> (<%, N^d^)) - de^\\c + u2\\ -\\u2\\ec-\\u2\\e^\\ux\\

> (d<l>2, NM(d<¡>2)) - \d\e"\c\ - \d\e"\d\2/3 - \d\2/3e" - \d\2/>e"V2 \d\

> (d<j>2, Nlc{(d<b2)) - (4 +\c\)e"\df/3.

To estimate (d<b2, N^(d<b2)), set p = sup <f>2(x) and y = inf <t>2(x). Clearly

-oo<y<0<ju< +00. Consider the case when d > 0 and let

0, = {x E ñ|<p2(x) > p/2)       and       02 = {x E 0| <f>2(x) < u/2).

Note that inf xgM(x) = - l/e and hence if d > 2\c\/p, then d$2(x) > \c\ for

all x G 0,, and

(d<b2, NM(d<b2)) = f ¿<J>2g|c|(¿<¡>2) = f + f
J •'Si      •'02

r r n I82I
>] d<t>2eM[dt2-\c\+l]-t-J-

>i d2e^p2\Ux\-deM\c\-^.

A similar argument works for d < 0. Combining all these inequalities, we

conclude that there exists a constant a > 0, depending only on the eigenvec-

tor <j>2, such that

(NM(c + ux), «,) >\d\2e"a -\d\e^\c\- 1 _ (4+\c\)e"d5/3

>\ae^\\ux\\2-(5 + 2\c\)e^\\uxf3,

and hence,

^^>f||Ml||-(5 + 2|c|)e'>1||^ (14)
Pill L

for all ||w,|j > 2V2 |c|/min{ p, - y). The estimate (7) now follows from (13)

and (14).

3. Remarks and generalizations. Monotonicity is essential to this method.

While equation (5a) may be solved by compactness methods, it is not clear

that such methods would yield a set of solutions which depend continuously

on c. Apart from this restriction it is clear that these methods apply to any

nonlinearity/(w) satisfying limli_+0O/(w)/u > X2andhmu^_xf(u) > -00.
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The use of the maximum principle to cut off the nonhnearity occurred in

two places. First, by making N Lipschitzian, it ensured that the sum of the

two maximal monotone operators in (5a) was also maximal which was

necessary to guarantee that (5a) had a solution. This equation could also be

solved by compactness, using the monotonicity to guarantee continuity of the

solution t(c).

However, it was also necessary to obtain information on limc_,+00 0(c)

which was necessary for information on the multiplicity of solutions and

appears essential here. Without the maximum principle, one could only

conclude that for each hx satisfying }hx = 0, there exists an open interval

(y, oo) such that equation (3) has at least one solution if t E (y, oo) and has

no solution if / E (-oo, y). This conclusion would apply to higher order

problems, for example

A2» - X2u + eu = hx + t       in ñ,

3w/3/j=3A/8h = 0. (15)

The methods used here would apply equally well to the Laplacian with

Dirichlet boundary conditions, or any operator whose lowest eigenvector does

not change sign.

The problem

- A« - XNu + eu = h       in ß,

du/r)n = 0       on3fi (16)

appears more difficult. These methods would only yield that for all

A1-L{«r>/}/<A,_,, then there exists some h2, h2 = 2?_V c,</>, such that (16) has a

solution. This result is surely not precise. Observe that a solution of (2) is also

a solution of the Landesman-Lazer problem

- A« - \2u + gM(u) = hx + t       in fi,

du/ dn = 0       on 9fi,

where gM is a smooth bounded monotone function satisfying g^(M) — X2u >

ll^i II» + I'I- Consequently, by the work of Nirenberg [4], any solution of this

problem is smooth.

The use of monotone operator techniques in the alternative method is not

new. The author wishes to acknowledge the inspiration of L. Cesari, from

whom he learned this technique. A comprehensive survey may be found in
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