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DOUBLE COMMUTANTS OF C0 CONTRACTIONS. II

MITSURU UCHIYAMA

Abstract. In [13], it was shown that if T is a C0 contraction with finite

defect indices oo > &> > Sr, then {T}" = {<KT): <í> e H°°}. In this note

we shall extend this result to oo > ó^. > ST and show that {T)" and H°° is

isometric isomorphic, and moreover such an operator is reflexive.

Introduction. In this note we use the notations, introduced in [9], without

explanation. For a bounded linear operator F on a separable Hubert space H,

the collection of all subspaces of H invariant for F is denoted by Lat F, and

the weakly closed algebra generated by T and / is denoted by AT. An

operator F is called reflexive if every bounded operator A satisfying Lat A D

Lat F belongs toAT.

When F is a special C.0 contraction, the AT and ( F}" were investigated by

some mathematicians (for unilateral shift see [2] and [11], for C0 contraction

see [1], [8], [14]).

In place of C.0 contraction F with defect indices 8^ = n, 8T = m (neces-

sarily n > m) we can consider S (9) on H(9), which is defined by H(9) =

H2 0 9H2 and S(9)h = PH(g)Xh(X) for h in H(9). In this case, for every <J> in

Hx, <b(S(9)) determined by

<b(S(9))h = Fw(e)#   for h in H(9)

belongs to AS(9) ([9] and [10]).

If n = m < oo, then S(9) is of class C0. Let 0 = [¿] be 2 X 1 constant

matrix valued function. Then S(9) formally defined by the above equation is

a unilateral shift. In this note we show that if n > m, then S(9) has several

properties in common with a unilateral shift.

Preliminaries. For an n X m (ce > n > m) inner function, Nordgren ([5]

for oo > n > m) and Sz.Nagy ([6] for oo > m) showed that there are an

n X m normal inner function N = diag^,, v2, . . . , vm) (cf. (1) of [12]), and

bounded n X n matrices A, and A" over Hx and m x m matrices A and A"

over H °° satisfying

A0 = A/A,   AA" = AaA = tj,/„   and   AA" = A" A = Tj2/m

for some n, in /7°° such that tj, A "m = 1 (/ = 1, 2). Setting
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Xh = PH(N)Ah for h in H(9), and

Yf- rH«Maf for fixxH(N),

it is well known that X: H(9) -» H(N) and Y: H(N) -» H(9) axe injective,

and that XS(9) = S(N)Xand YS(N) = S(9)Y.

For such X and Y, it is obvious that

XY = -n(S(N)),    YX = ri(S(9)),   where n = r,,^.

Similarly there are injective A" and Y' such that A".^) = S(N)X',

Y'S(N) = S(9)Y', X'Y' = r,'(S(N)), Y'X' = t]'(S(9)), where tj' and t]vm

are relatively prime functions in H00.

We can obtain, in virtue of [6], the same results about the hyperinvariant

subspaces of S (9) with oo > n > m as [12]. In particular, we have

Lemma 1. <b(S(9)) is injective, if and only if <j> A vm = 1 (see Corollary 2 of

[12]).

Lemma 2. <b(S(9))H(9) is dense in H(9), if and only if 4> is outer (cf.

Corollary 1 o/[12]).

Lemma 3. [S(N)}" = [<b(S(N)): 4, E /Y00}.

Proof. Since
m n

H(N) = *2  ©i/(i>,.)©    2     H2   and
1-1 i = m+X

s(N) = 2 ©s(»,.)© 2   ©?,
i'=l / = m + 1

where 5 is a unilateral shift on //2, it is clear that if A E [S(N))", then

A = 27.! © .4, for 4 G {S(k,)}" (i = 1, 2, ... , m) and 2?=m+1 © ¿, G
{27=m+i 5}". From [10], it follows that A¡ = <í>,(S(»',)) for i = I, 2, . . . , m,

and from [2], we can deduce that 2"=m+1 © A¡ = <¡>I„_m. Define a B in

{S(AT)}'by
n m n

*2 ®«, = E ©tywi© 2   ©»,,
i = l i'=l i = m+l

where P¡ is a projection onto ith component of H (N). Then

ab f © «,. = f f © ̂ A,+i J © ( ¿   © <#,«,]
1=1 V/-1 / \i = m+l /

and

baJ: ©«, = (2 ©^#m+>J©(  ¿   ©#,)•
1 = 1 \i = l /        \i = m+l /

Therefore AB = BA implies that Pfah = P¡<¡>h for every n in H2.

Consequently we have <p,-(S (?,•)) = <p(S(v¡)) and hence A = <b(S(N)).

Lemma 4. S(N) is reflexive. Moreover if Lat A D Lat S(N), then A =

<KS(N))forsome<l>inHx.
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Proof. Since each component space of H(N) reduces S(N), it also

reduces A, that is, A has the form A = 2"=1 © A¡. Since Lat A¡ D Lat S for

/' = m + 1, m + 2, . . . , from [11] we have A¡ = <b¡I. Now viJrX/vi E H°°

(<-l, 2, . . . , m - 1) implies that H(vx) C H(v2) Ç ■ • • C H(vJ Q H2.

Therefore, setting L0 = {(P¡x © Pjx): x E H2), L0 belongs to Lat 5(A). If i,

j > m + 1, then AL¡j C Ly implies <¡>¡ = <fy. If / < m <j, then ALtj C L¡j
implies that for every x in H(v¡) there is a y in H2 such that (A¡x © tyx) =

(F¿y ®y). From this it follows that Ai = <py(5 (»»,•)) and hence A = <b(S(N))

for some <£ in //°°.

Remark. Lemma 3 is valid for n = m < oo, but Lemma 4 is not generally

valid for n = m < oo.

Lemma 5. (5(0)}" = (D: t}(S(0))Z> = <b(S(9)) for some <b in H°°).

Proof. For arbitrary D in {^(f?)}" and any B in {5(A)}', set F = XDYB

- BXDY. Then, since YBX belongs to {5(0)}' and XY = n(5(A)) belongs

to {5(A)}", it follows that

YK = YXDYB - YBXDY = DYXYB - DYBXY = 0,

which implies K = 0. Consequently, from Lemma 3, there is a <b in H °° such

that XD7 = <i>(5(A)). Because

t,(5(0))/>j(5(0)) = YXDYX = Y<b(S(N))X = 1(S(9))<b(S(9)),

from Lemma 1, we have ri(S(9))D = <b(S(9)). Conversely if n(5(f?))£) =

</>(5(0)), then for every C in (5(0)}' it follows that

n(5(0 ))DC = <#>(5(0))C = C</>(5(0)) = Ctj(5(0))I> = n(5(0))CZ).

Hence we have DC = CD.

Lemma 6. //A7)y = <b(S(N)) andX'DY' = <b'(S(N))for <#>, <i>' m /700, f/ievt

£)6e/ongjfo{5(0)}".

Proof. By the proof of Lemma 5, we have

Dr,(S(9)) = <b(S(9))   and   Dr,'(S(9)) = <b'(S(9)).

Consequently, for arbitrary C in {5(0)}', we have

DCr1(S(9)) = Dq(S(9))C = <b(S(9))C = C<b(S(9)) = CDt,(S(9)),

and similarly Z)Ct/'(5(0)) = CDr\'(S(9)). Since tj and n' are relatively prime,

the ranges of n(5(0)) and n'(5(0)) span a dense set in H(9). Thus we have

DC = CD.

Main results.

Theorem 1. If oo > n > w, then for every D in {5(0)}" f/tere z's a unique <b

in HK such that D = ^(5(0)). In this case ||<i>(5(0))|| = IML-

Theorem 2. // <x> > n > m, then AS(9) = {D: Lat D D Lat 5(0)} =

{5(0)}" = {<H5(0)): <í> E Hx). In particular, S(9) is reflexive.
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Proof of Theorem 2. Assume that Theorem 1 is right. Since

As(e) C {D: Lat D D Lat 5(0)}

and

{S(9)}" = {<t>(S(9)): <b E H™ } E Asw,

we must only show that if Lat D D Lat 5(0), then D belongs to {5(0)}".

5(0) Y= YS(N) implies that if L belongs to Lat 5(A), YL belongs to

Lat 5(0). Therefore

XDYL CXDYLEXYLÇ XYL = tj(5(A))F C L.

From Lemma 4, we have XDY = <¡>(S(N)). And similarly we have X'DY' =

<t>'(S(N)). Thus by Lemma 6 we can conclude the proof.

Proof of Theorem 1. Let D belong to {5(0)}". Then from Lemma 5 and

Lemma 1 we can assume that <¡>X(S(9))D = <p2(S(9)), where </>, and <b2 are

relatively prime functions in //°°. Thus, from the lifting theorem, there are an

n X n matrix valued bounded function T = (y„) over H°°, and an m X n

matrix valued bounded function ß = (u¡j) over H °° such that

T9H2E9H2,   D = Pme)T\H(9), |£|| = liriL=sup ur(A)||,
A

and

<b2I„ - <bxT = 0fi.

(1)

(2)

Since 0 is inner, there is an m X m submatrix 9a of 0 such that det 9a ^ 0 (cf.

[7]). Since t is a unitary operator on an «-dimensional space then S(t9) and

5(0) are unitarily equivalent, we can assume that the determinant of the first

m X m submatrix of 0 is not 0. Set 0 = (0^) and let 9a = (0a(i)J) be an m X m

submatrix of 0 such that 1 < a(\) < a(2) < • • • < a(m). For such a

submatrix 9a we fix a natural number k(a) satisfying k(a) ^ a(i) for /' = 1,

2, . . ., m. Let 9'a = (0a'(/)y) be the classical adjoint matrix of 9a. Then by the

same technique as the proof of Theorem 1 of [13], from (2), we have

- Wa

Ta(l) k(a)

ya(m) k{a)

= (det 9a)

Jl Ha)

um k(a)

and hence

~'t>](('k(a)h ■ ■ ■ , 9k(aX^)9'a

ya(\)k(a)

Ja(m)k(a)

= (det9a)(<t>2-<t>xyk(a)k(a)).    (3)
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From (3), by simple calculation, we have

<#>, det

9.a(X) 1>

9a(m) 1>

'jfc(fl) 1» •

9a(X)m>        ya(X)k(a)

''aim) mi       Ya(m) k(a)

9k(a) m>       fk(a) k(a)

= <t>2 det 9a. (4)

This implies that the inner factor of <¡>x is a divisor of /\a det 9a. But

•#>! A "m = 1 implies that <bx A(Aa det 9a) = 1. Thus <i>, is outer. For a

submatrix 9a satisfying 1 < a(l) < • • • < a(m) < m + 1, there is a unique

/c(a) such that 1 < k(a) < m + 1 and A:(a) ̂  a(/) for / = 1, 2, . . . , m.

Conversely, for every 1 < k < m + 1, there is a unique 9a such that 1 < a(\)

< • • • < a(m) < m + 1 and k(a) = k. Thus setting 4(íj)(a) = det 9a(X), (4)

implies that for every k: 1 < k < «i + 1,

IfcMI2 14(a)!2 = I<í>,(a)|2

From (5) it follows that

m + X

l</>2(A)|2    2     I4(A)|2
A=l

det

9X „ . . .,

"m + l 1'

'1/n'

a
"mm>

yxk

Ymk

• ' "m + lm+l>        Ym+Xk

(A) (5)

= Ma)|2

Yu(a), 72l(À), •••, Ym+ll(À)

Ylm+l(À),       y2m+l(À), • ïm+lm+liÀ)

£>('

(-l)m|m+.(A)

m+X

<Ma)|2||T„,+1(a)||2I 2i I&(a)|2I,

where Tm+1(A) is the first submatrix of T(X) of order m + 1, and Tm+1(X)

denotes the transposed matrix of Tm+x(X). Since by the assumption £m+1(A) ¥^

0 a.e., it follows that

I«Ma)|2 < l<i-,(A)|21|' rm+1(X)||2 < |*,(X)|2 urn2.. (6)
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Thus there is a <b in H°° such that <b2 = <fâx and \\<b\\x < yr^ = \\D\\ (cf.

[3]). Hence we have D = <b(S(9)) (see [13]). Moreover, since \\D\\ < y^H«, is

clear, it follows that ||D|| = IMI«,.
Assume that <i>(5(0)) = t//(5(0)) for ^ and ifV in i/00. This implies that there

is an m x « matrix valued bounded function ti'(X) over H °° such that

<R - V„ = 0ß'. (2)'

By the same way above we can deduce, from (2)', the next relation

0

- <t>(0k(a)l> • •■ > QkMmWá = (det 9a )(<*>-# (3)'

0

Since there is a submatrix 9a such that det 9a(X) i= 0 a.e., we have <b(X) = \p(X)

a.e.. Thus we can conclude the proof.

Corollaries. From the theorems above we obtain several results.

Corollary 1. <b(S(9)) is boundedly invertible, if and only if <b is invertible in
Hx.

Proof. Suppose <b(S(9))D = D<b(S(9)) = 1. Then D belongs to {5(0)}".

Thus D = t/<5(0)) for some t/- in Hx. Since / = (<bx¡/)(S(9)), we have 1 = <b>p.

The converse assertion is obvious.

Corollary 2. <b(S(9)) is not compact for every <J> in H™.

Proof. If <j>(S(9)) is compact, then (<br¡)(S(N)) = X<b(S(9))Y is compact.

In particular, the multiplication by <jyq on H2, i.e. the analytic Toeplitz

operator F^, is compact. But this is impossible (see [2]).

Corollary 3.

o,(5(0)) ={z:|z|<l,,m(z) = 0}.

or(S(9)) = {z:\z\<\,vm(z)*0).

ac(5(0))={z:|z| = l}.

Proof. First from Lemma 1 z E 0,(5(0)), if and only if X - z and vm(X)

are not relatively prime, that is, vm(z) = 0. Next, from Lemma 2, z E

or(S(9)), if and only if vm(z) =£ 0 and (X — z) is not outer, that is, \z\ < 1 (cf.

[4]). Finally, z E p(S(9)) if and only if (X - z) is invertible. Thus it is clear

oc(5(0)) = {z: \z\ = 1}.

Remark. Let 0 = [¿] be a 2x1 matrix valued inner function. Then

<X5(0)) is an analytic Toeplitz operator F^, and vm = 1. In this case all

corollaries above are well known.

Corollary 4. V is a Banach space isometry of {5(0)}" onto itself if and

only if for \a\ = 1, |è| = 1, \c\ < 1,

V<b(S(9)) = a<í>(¿>(5(0) - c)(l - c5(0))-').

In particular if V(\) = 1, then V is multiplicative.
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Proof. If V is defined by the above equation, then it is clear that

V<¡>(S(9)) = a^b AZJLJJ(S(0)).

Therefore V is a linear mapping on {S(9))".

1Mb Y^-=r ))(S(9)) - |a| |L(* jSk)\  = mL = H*(s(*))!!•

Thus V is isometric. Conversely suppose V a Banach space isometry of

{S(9))" onto itself. Setting V<b(S(9)) = <¡>y(S(9)), V0: <b^><bv is a Banach

space isometry on H°°. Therefore (VQ<b)(X) = a(<f>(p))(X), where p is a

conformai mapping of the open unit disc onto itself (cf. [4]). Consequently V

has the form given above. The rest is trivial.

The author wishes to thank Professor B.Sz.-Nagy and the referee for their

kind advice.
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