DOUBLE COMMUTANTS OF $C_{\cdot 0}$ CONTRACTIONS. II

MITSURU UCHIYAMA

Abstract

In [13], it was shown that if T is a $C_{.0}$ contraction with finite defect indices $\infty>\delta_{T^{*}}>\delta_{T}$, then $\{T\}^{\prime \prime}=\left\{\phi(T): \phi \in H^{\infty}\right\}$. In this note we shall extend this result to $\infty>\delta_{T^{*}}>\delta_{T}$ and show that $\{T\}^{\prime \prime}$ and H^{∞} is isometric isomorphic, and moreover such an operator is reflexive.

Introduction. In this note we use the notations, introduced in [9], without explanation. For a bounded linear operator T on a separable Hilbert space H, the collection of all subspaces of H invariant for T is denoted by Lat T, and the weakly closed algebra generated by T and I is denoted by A_{T}. An operator T is called reflexive if every bounded operator A satisfying Lat $A \supseteq$ Lat T belongs to A_{T}.

When T is a special $C_{\cdot 0}$ contraction, the A_{T} and $\{T\}^{\prime \prime}$ were investigated by some mathematicians (for unilateral shift see [2] and [11], for C_{0} contraction see [1], [8], [14]).

In place of $C_{\cdot 0}$ contraction T with defect indices $\delta_{T^{*}}=n, \delta_{T}=m$ (necessarily $n \geqslant m$) we can consider $S(\theta)$ on $H(\theta)$, which is defined by $H(\theta)=$ $H_{n}^{2} \ominus \theta H_{m}^{2}$ and $S(\theta) h=P_{H(\theta)} \lambda h(\lambda)$ for h in $H(\theta)$. In this case, for every ϕ in $H^{\infty}, \phi(S(\theta))$ determined by

$$
\phi(S(\theta)) h=P_{H(\theta)} \phi h \quad \text { for } h \text { in } H_{.}(\theta)
$$

belongs to $A_{S(\theta)}$ ([9] and [10]).
If $n=m<\infty$, then $S(\theta)$ is of class C_{0}. Let $\theta=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ be 2×1 constant matrix valued function. Then $S(\theta)$ formally defined by the above equation is a unilateral shift. In this note we show that if $n>m$, then $S(\theta)$ has several properties in common with a unilateral shift.

Preliminaries. For an $n \times m(\infty \geqslant n>m)$ inner function, Nordgren ([5] for $\infty>n>m$) and Sz.Nagy ([6] for $\infty>m$) showed that there are an $n \times m$ normal inner function $N=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right)$ (cf. (1) of [12]), and bounded $n \times n$ matrices Δ, and Δ^{a} over H^{∞} and $m \times m$ matrices Λ and Λ^{a} over H^{∞} satisfying

$$
\Delta \theta=N \Lambda, \quad \Delta \Delta^{a}=\Delta^{a} \Delta=\eta_{1} I_{n} \quad \text { and } \quad \Lambda \Lambda^{a}=\Lambda^{a} \Lambda=\eta_{2} I_{m}
$$

for some η_{i} in H^{∞} such that $\eta_{i} \wedge \nu_{m}=1(i=1,2)$. Setting

[^0]$X h=P_{H(N)} \Delta h$ for h in $H(\theta)$, and
$Y f=P_{H(\theta)} \eta_{2} \Delta^{a} f$ for f in $H(N)$,
it is well known that $X: H(\theta) \rightarrow H(N)$ and $Y: H(N) \rightarrow H(\theta)$ are injective, and that $X S(\theta)=S(N) X$ and $Y S(N)=S(\theta) Y$.

For such X and Y, it is obvious that

$$
X Y=\eta(S(N)), \quad Y X=\eta(S(\theta)), \quad \text { where } \eta=\eta_{1} \eta_{2}
$$

Similarly there are injective X^{\prime} and Y^{\prime} such that $X^{\prime} S(\theta)=S(N) X^{\prime}$, $Y^{\prime} S(N)=S(\theta) Y^{\prime}, X^{\prime} Y^{\prime}=\eta^{\prime}(S(N)), Y^{\prime} X^{\prime}=\eta^{\prime}(S(\theta))$, where η^{\prime} and $\eta \nu_{m}$ are relatively prime functions in H^{∞}.

We can obtain, in virtue of [6], the same results about the hyperinvariant subspaces of $S(\theta)$ with $\infty \geqslant n>m$ as [12]. In particular, we have

Lemma 1. $\phi(S(\theta))$ is injective, if and only if $\phi \wedge \nu_{m}=1$ (see Corollary 2 of [12]).

Lemma 2. $\phi(S(\theta)) H(\theta)$ is dense in $H(\theta)$, if and only if ϕ is outer (cf. Corollary 1 of [12]).
Lemma 3. $\{S(N)\}^{\prime \prime}=\left\{\phi(S(N)): \phi \in H^{\infty}\right\}$.
Proof. Since

$$
\begin{aligned}
& H(N)=\sum_{i=1}^{m} \oplus H\left(v_{i}\right) \oplus \sum_{i=m+1}^{n} H^{2} \text { and } \\
& S(N)=\sum_{i=1}^{m} \oplus S\left(v_{i}\right) \oplus \sum_{i=m+1}^{n} \oplus S
\end{aligned}
$$

where S is a unilateral shift on H^{2}, it is clear that if $A \in\{S(N)\}^{\prime \prime}$, then $A=\sum_{i=1}^{n} \oplus A_{i}$ for $A_{i} \in\left\{S\left(\nu_{i}\right)\right\}^{\prime \prime}(i=1,2, \ldots, m)$ and $\sum_{i=m+1}^{n} \bigoplus A_{i} \in$ $\left\{\sum_{i=m+1}^{n} S\right\}^{\prime \prime}$. From [10], it follows that $A_{i}=\phi_{i}\left(S\left(\nu_{i}\right)\right)$ for $i=1,2, \ldots, m$, and from [2], we can deduce that $\sum_{i=m+1}^{n} \oplus A_{i}=\phi I_{n-m}$. Define a B in $\{S(N)\}^{\prime}$ by

$$
B \sum_{i=1}^{n} \oplus h_{i}=\sum_{i=1}^{m} \oplus P_{i} h_{m+1} \oplus \sum_{i=m+1}^{n} \oplus h_{i}
$$

where P_{i} is a projection onto i th component of $H(N)$. Then

$$
A B \sum_{i=1}^{n} \oplus h_{i}=\left(\sum_{i=1}^{m} \oplus P_{i} \phi_{i} h_{m+1}\right) \oplus\left(\sum_{i=m+1}^{n} \oplus \phi h_{i}\right)
$$

and

$$
B A \sum_{i=1}^{n} \oplus h_{i}=\left(\sum_{i=1}^{m} \oplus P_{i} \phi h_{m+1}\right) \oplus\left(\sum_{i=m+1}^{n} \oplus \phi h_{i}\right)
$$

Therefore $A B=B A$ implies that $P_{i} \phi_{i} h=P_{i} \phi h$ for every h in H^{2}. Consequently we have $\phi_{i}\left(S\left(v_{i}\right)\right)=\phi\left(S\left(v_{i}\right)\right)$ and hence $A=\phi(S(N))$.

Lemma 4. $S(N)$ is reflexive. Moreover if Lat $A \supseteq$ Lat $S(N)$, then $A=$ $\phi(S(N))$ for some ϕ in H^{∞}.

Proof. Since each component space of $H(N)$ reduces $S(N)$, it also reduces A, that is, A has the form $A=\sum_{i=1}^{n} \bigoplus A_{i}$. Since Lat $A_{i} \supseteq$ Lat S for $i=m+1, m+2, \ldots$, from [11] we have $A_{i}=\phi_{i} I$. Now $\nu_{i+1} / \nu_{i} \in H^{\infty}$ $(i=1,2, \ldots, m-1)$ implies that $H\left(\nu_{1}\right) \subseteq H\left(\nu_{2}\right) \subseteq \cdots \subseteq H\left(\nu_{m}\right) \subseteq H^{2}$. Therefore, setting $L_{i j}=\left\{\left(P_{i} x \oplus P_{j} x\right): x \in H^{2}\right\}, L_{i j}$ belongs to Lat $S(N)$. If i, $j \geqslant m+1$, then $A L_{i j} \subseteq L_{i j}$ implies $\phi_{i}=\phi_{j}$. If $i \leqslant m<j$, then $A L_{i j} \subseteq L_{i j}$ implies that for every x in $H\left(\nu_{i}\right)$ there is a y in H^{2} such that $\left(A_{i} x \oplus \phi_{j} x\right)=$ $\left(P_{i} y \oplus y\right)$. From this it follows that $A_{i}=\phi_{j}\left(S\left(\nu_{i}\right)\right)$ and hence $A=\phi(S(N))$ for some ϕ in H^{∞}.

Remark. Lemma 3 is valid for $n=m<\infty$, but Lemma 4 is not generally valid for $n=m<\infty$.

Lemma 5. $\{S(\theta)\}^{\prime \prime}=\left\{D: \eta(S(\theta)) D=\phi(S(\theta))\right.$ for some ϕ in $\left.H^{\infty}\right\}$.
Proof. For arbitrary D in $\{S(\theta)\}^{\prime \prime}$ and any B in $\{S(N)\}^{\prime}$, set $K=X D Y B$ - BXDY. Then, since $Y B X$ belongs to $\{S(\theta)\}^{\prime}$ and $X Y=\eta(S(N))$ belongs to $\{S(N)\}^{\prime \prime}$, it follows that

$$
Y K=Y X D Y B-Y B X D Y=D Y X Y B-D Y B X Y=0
$$

which implies $K=0$. Consequently, from Lemma 3, there is a ϕ in H^{∞} such that $X D Y=\phi(S(N))$. Because

$$
\eta(S(\theta)) D \eta(S(\theta))=Y X D Y X=Y \phi(S(N)) X=\eta(S(\theta)) \phi(S(\theta))
$$

from Lemma 1, we have $\eta(S(\theta)) D=\phi(S(\theta))$. Conversely if $\eta(S(\theta)) D=$ $\phi(S(\theta))$, then for every C in $\{S(\theta)\}^{\prime}$ it follows that

$$
\eta(S(\theta)) D C=\phi(S(\theta)) C=C \phi(S(\theta))=C \eta(S(\theta)) D=\eta(S(\theta)) C D .
$$

Hence we have $D C=C D$.
Lemma 6. If $X D Y=\phi(S(N))$ and $X^{\prime} D Y^{\prime}=\phi^{\prime}(S(N))$ for ϕ, ϕ^{\prime} in H^{∞}, then D belongs to $\{S(\theta)\}^{\prime \prime}$.

Proof. By the proof of Lemma 5, we have

$$
D \eta(S(\theta))=\phi(S(\theta)) \quad \text { and } \quad D \eta^{\prime}(S(\theta))=\phi^{\prime}(S(\theta)) .
$$

Consequently, for arbitrary C in $\{S(\theta)\}^{\prime}$, we have

$$
D C \eta(S(\theta))=D \eta(S(\theta)) C=\phi(S(\theta)) C=C \phi(S(\theta))=C D \eta(S(\theta))
$$

and similarly $D C \eta^{\prime}(S(\theta))=C D \eta^{\prime}(S(\theta))$. Since η and η^{\prime} are relatively prime, the ranges of $\eta(S(\theta))$ and $\eta^{\prime}(S(\theta))$ span a dense set in $H(\theta)$. Thus we have $D C=C D$.

Main results.

Theorem 1. If $\infty \geqslant n>m$, then for every D in $\{S(\theta)\}^{\prime \prime}$ there is a unique ϕ in H^{∞} such that $D=\phi(S(\theta))$. In this case $\|\phi(S(\theta))\|=\|\phi\|_{\infty}$.

Theorem 2. If $\infty \geqslant n>m$, then $A_{S(\theta)}=\{D$: Lat $D \supseteq$ Lat $S(\theta)\}=$ $\{S(\theta)\}^{\prime \prime}=\left\{\phi(S(\theta)): \phi \in H^{\infty}\right\}$. In particular, $S(\theta)$ is reflexive.

Proof of Theorem 2. Assume that Theorem 1 is right. Since

$$
A_{S(\theta)} \subseteq\{D: \text { Lat } D \supseteq \text { Lat } S(\theta)\}
$$

and

$$
\{S(\theta)\}^{\prime \prime}=\left\{\phi(S(\theta)): \phi \in H^{\infty}\right\} \subseteq A_{S(\theta)}
$$

we must only show that if Lat $D \supseteq$ Lat $S(\theta)$, then D belongs to $\{S(\theta)\}^{\prime \prime}$. $S(\theta) Y=Y S(N)$ implies that if L belongs to Lat $S(N), \overline{Y L}$ belongs to Lat $S(\theta)$. Therefore

$$
X D Y L \subseteq X D \overline{Y L} \subseteq X \overline{Y L} \subseteq \overline{X Y L}=\overline{\eta(S(N)) L} \subseteq L
$$

From Lemma 4, we have $X D Y=\phi(S(N))$. And similarly we have $X^{\prime} D Y^{\prime}=$ $\phi^{\prime}(S(N))$. Thus by Lemma 6 we can conclude the proof.

Proof of Theorem 1. Let D belong to $\{S(\theta)\}^{\prime \prime}$. Then from Lemma 5 and Lemma 1 we can assume that $\phi_{1}(S(\theta)) D=\phi_{2}(S(\theta))$, where ϕ_{1} and ϕ_{2} are relatively prime functions in H^{∞}. Thus, from the lifting theorem, there are an $n \times n$ matrix valued bounded function $\Gamma=\left(\gamma_{i j}\right)$ over H^{∞}, and an $m \times n$ matrix valued bounded function $\Omega=\left(\omega_{i j}\right)$ over H^{∞} such that

$$
\begin{equation*}
\Gamma \theta H_{m}^{2} \subseteq \theta H_{m}^{2}, \quad D=P_{H(\theta)} \Gamma \mid H(\theta), \quad\|D\|=\|\Gamma\|_{\infty}=\sup _{\lambda}\|\Gamma(\lambda)\| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2} I_{n}-\phi_{1} \Gamma=\theta \Omega \tag{2}
\end{equation*}
$$

Since θ is inner, there is an $m \times m$ submatrix θ_{a} of θ such that $\operatorname{det} \theta_{a} \neq 0$ (cf. [7]). Since τ is a unitary operator on an n-dimensional space then $S(\tau \theta)$ and $\boldsymbol{S}(\boldsymbol{\theta})$ are unitarily equivalent, we can assume that the determinant of the first $m \times m$ submatrix of θ is not 0 . Set $\theta=\left(\theta_{i j}\right)$ and let $\theta_{a}=\left(0_{a(i) j}\right)$ be an $m \times m$ submatrix of θ such that $1 \leqslant a(1)<a(2)<\cdots<a(m)$. For such a submatrix θ_{a} we fix a natural number $k(a)$ satisfying $k(a) \neq a(i)$ for $i=1$, $2, \ldots, m$. Let $\theta_{a}^{\prime}=\left(\theta_{a}^{\prime}(i) j\right)$ be the classical adjoint matrix of θ_{a}. Then by the same technique as the proof of Theorem 1 of [13], from (2), we have

$$
-\phi_{1} \theta_{a}^{\prime}\left[\begin{array}{c}
\gamma_{a(1) k(a)} \\
\vdots \\
\gamma_{a(m) k(a)}
\end{array}\right]=\left(\operatorname{det} \theta_{a}\right)\left[\begin{array}{c}
\omega_{1 k(a)} \\
\vdots \\
\omega_{m k(a)}
\end{array}\right],
$$

and hence

$$
-\phi_{1}\left(\theta_{k(a) 1}, \ldots, \theta_{k(a) m}\right) \theta_{a}^{\prime}\left[\begin{array}{c}
\gamma_{a(1) k(a)} \tag{3}\\
\vdots \\
\gamma_{a(m) k(a)}
\end{array}\right]=\left(\operatorname{det} \theta_{a}\right)\left(\phi_{2}-\phi_{1} \gamma_{k(a) k(a)}\right) .
$$

From (3), by simple calculation, we have

$$
\phi_{1} \operatorname{det}\left[\begin{array}{ccc}
\theta_{a(1) 1}, \ldots, & \theta_{a(1) m}, & \gamma_{a(1) k(a)} \tag{4}\\
\vdots & \vdots & \vdots \\
\theta_{a(m) 1}, \ldots, & \theta_{a(m) m}, & \gamma_{a(m) k(a)} \\
\theta_{k(a) 1}, \ldots, & \theta_{k(a) m}, & \gamma_{k(a) k(a)}
\end{array}\right]=\phi_{2} \operatorname{det} \theta_{a} .
$$

This implies that the inner factor of ϕ_{1} is a divisor of $\wedge_{a} \operatorname{det} \theta_{a}$. But $\phi_{1} \wedge \nu_{m}=1$ implies that $\phi_{1} \wedge\left(\bigwedge_{a} \operatorname{det} \theta_{a}\right)=1$. Thus ϕ_{1} is outer. For a submatrix θ_{a} satisfying $1 \leqslant a(1)<\cdots<a(m) \leqslant m+1$, there is a unique $k(a)$ such that $1 \leqslant k(a) \leqslant m+1$ and $k(a) \neq a(i)$ for $i=1,2, \ldots, m$. Conversely, for every $1 \leqslant k \leqslant m+1$, there is a unique θ_{a} such that $1 \leqslant a(1)$ $<\cdots<a(m) \leqslant m+1$ and $k(a)=k$. Thus setting $\xi_{k(a)}(\lambda)=\operatorname{det} \theta_{a}(\lambda)$, (4) implies that for every $k: 1 \leqslant k \leqslant m+1$,

$$
\left|\phi_{2}(\lambda)\right|^{2}\left|\xi_{k}(\lambda)\right|^{2}=\left|\phi_{1}(\lambda)\right|^{2}\left|\operatorname{det}\left[\begin{array}{ccc}
\theta_{11}, \ldots, & \theta_{1 m}, & \gamma_{1 k} \\
\vdots & \vdots & \vdots \\
\theta_{m 1}, \ldots, & \theta_{m m}, & \gamma_{m k} \\
\theta_{m+11}, \ldots, & \theta_{m+1 m+1}, & \gamma_{m+1 k}
\end{array}\right](\lambda)\right|^{2} .(5)
$$

From (5) it follows that
$\left|\phi_{2}(\lambda)\right|^{2} \sum_{k=1}^{m+1}\left|\xi_{k}(\lambda)\right|^{2}$
$=\left|\phi_{1}(\lambda)\right|^{2} \|\left[\begin{array}{ccc}\gamma_{11}(\lambda), & \gamma_{21}(\lambda), \ldots, & \gamma_{m+11}(\lambda) \\ \vdots & \vdots & \vdots \\ \gamma_{1 m+1}(\lambda), & \gamma_{2 m+1}(\lambda), \ldots, & \gamma_{m+1 m+1}(\lambda)\end{array}\right]$

$$
\cdot\left[\begin{array}{l}
\xi_{1}(\lambda) \\
\vdots \\
(-1)^{m} \xi_{m+1}(\lambda)
\end{array}\right] \|^{2}
$$

$$
\leqslant\left|\phi_{1}(\lambda)\right|^{2}\left\|^{t} \Gamma_{m+1}(\lambda)\right\|^{2}\left(\sum_{k=1}^{m+1}\left|\xi_{k}(\lambda)\right|^{2}\right)
$$

where $\Gamma_{m+1}(\lambda)$ is the first submatrix of $\Gamma(\lambda)$ of order $m+1$, and ${ }^{t} \Gamma_{m+1}(\lambda)$ denotes the transposed matrix of $\Gamma_{m+1}(\lambda)$. Since by the assumption $\xi_{m+1}(\lambda) \neq$ 0 a.e., it follows that

$$
\begin{equation*}
\left|\phi_{2}(\lambda)\right|^{2} \leqslant\left|\phi_{1}(\lambda)\right|^{2}\left\|^{t} \Gamma_{m+1}(\lambda)\right\|^{2} \leqslant\left|\phi_{1}(\lambda)\right|^{2}\|\Gamma\|_{\infty}^{2} . \tag{6}
\end{equation*}
$$

Thus there is a ϕ in H^{∞} such that $\phi_{2}=\phi \phi_{1}$ and $\|\phi\|_{\infty} \leqslant\|\Gamma\|_{\infty}=\|D\|$ (cf. [3]). Hence we have $D=\phi(S(\theta))$ (see [13]). Moreover, since $\|D\| \leqslant\|\phi\|_{\infty}$ is clear, it follows that $\|D\|=\|\phi\|_{\infty}$.

Assume that $\phi(S(\theta))=\psi(S(\theta))$ for ϕ and ψ in H^{∞}. This implies that there is an $m \times n$ matrix valued bounded function $\Omega^{\prime}(\lambda)$ over H^{∞} such that

$$
\begin{equation*}
\phi I_{n}-\psi I_{n}=\theta \Omega^{\prime} \tag{2}
\end{equation*}
$$

By the same way above we can deduce, from (2)', the next relation

$$
-\phi\left(\theta_{k(a) 1}, \ldots, \theta_{k(a) m}\right) \theta_{a}^{\prime}\left[\begin{array}{c}
0 \tag{3}\\
\vdots \\
0
\end{array}\right]=\left(\operatorname{det} \theta_{a}\right)(\phi-\psi)
$$

Since there is a submatrix θ_{a} such that $\operatorname{det} \theta_{a}(\lambda) \neq 0$ a.e., we have $\phi(\lambda)=\psi(\lambda)$ a.e.. Thus we can conclude the proof.

Corollaries. From the theorems above we obtain several results.
Corollary 1. $\phi(S(\theta))$ is boundedly invertible, if and only if ϕ is invertible in H^{∞}.

Proof. Suppose $\phi(S(\theta)) D=D \phi(S(\theta))=1$. Then D belongs to $\{S(\theta)\}^{\prime \prime}$. Thus $D=\psi(S(\theta))$ for some ψ in H^{∞}. Since $I=(\phi \psi)(S(\theta))$, we have $1=\phi \psi$. The converse assertion is obvious.

Corollary 2. $\phi(S(\theta))$ is not compact for every ϕ in H^{∞}.
Proof. If $\phi(S(\theta))$ is compact, then $(\phi \eta)(S(N))=X \phi(S(\theta)) Y$ is compact. In particular, the multiplication by $\phi \eta$ on H^{2}, i.e. the analytic Toeplitz operator $T_{\phi \eta}$, is compact. But this is impossible (see [2]).

Corollary 3.

$$
\begin{aligned}
\sigma_{p}(S(\theta)) & =\left\{z:|z|<1, \nu_{m}(z)=0\right\} . \\
\sigma_{r}(S(\theta)) & =\left\{z:|z|<1, \nu_{m}(z) \neq 0\right\} . \\
\sigma_{c}(S(\theta)) & =\{z:|z|=1\} .
\end{aligned}
$$

Proof. First from Lemma $1 z \in \sigma_{p}(S(\theta))$, if and only if $\lambda-z$ and $\nu_{m}(\lambda)$ are not relatively prime, that is, $\nu_{m}(z)=0$. Next, from Lemma $2, z \in$ $\sigma_{r}(S(\theta))$, if and only if $\nu_{m}(z) \neq 0$ and $(\lambda-z)$ is not outer, that is, $|z|<1$ (cf. [4]). Finally, $z \in \rho(S(\theta))$ if and only if $(\lambda-z)$ is invertible. Thus it is clear $\sigma_{c}(S(\theta))=\{z:|z|=1\}$.
Remark. Let $\theta=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ be a 2×1 matrix valued inner function. Then $\phi(S(\theta))$ is an analytic Toeplitz operator T_{ϕ}, and $\nu_{m}=1$. In this case all corollaries above are well known.

Corollary 4. V is a Banach space isometry of $\{S(\theta)\}^{\prime \prime}$ onto itself if and only if for $|a|=1,|b|=1,|c|<1$,

$$
V \phi(S(\theta))=a \phi\left(b(S(\theta)-c)(1-\bar{c} S(\theta))^{-1}\right)
$$

In particular if $V(1)=1$, then V is multiplicative.

Proof. If V is defined by the above equation, then it is clear that

$$
V \phi(S(\theta))=a\left(\phi\left(b \frac{\lambda-c}{1-\bar{c} \lambda}\right)\right)(S(\theta))
$$

Therefore V is a linear mapping on $\{S(\theta)\}^{\prime \prime}$.

$$
\left\|a\left(\phi\left(b \frac{\lambda-c}{1-\bar{c} \lambda}\right)\right)(S(\theta))\right\|=|a|\left\|\phi\left(b \frac{\lambda-c}{1-\bar{c} \lambda}\right)\right\|_{\infty}=\|\phi\|_{\infty}=\|\phi(S(\theta))\| .
$$

Thus V is isometric. Conversely suppose V a Banach space isometry of $\{S(\theta)\}^{\prime \prime}$ onto itself. Setting $V \phi(S(\theta))=\phi_{V}(S(\theta)), V_{0}: \phi \rightarrow \phi_{V}$ is a Banach space isometry on H^{∞}. Therefore $\left(V_{0} \phi\right)(\lambda)=a(\phi(\mu))(\lambda)$, where μ is a conformal mapping of the open unit disc onto itself (cf. [4]). Consequently V has the form given above. The rest is trivial.
The author wishes to thank Professor B.Sz.-Nagy and the referee for their kind advice.

References

1. H. Bercovici, C. Foias and B. Sz.-Nagy, Compléments à l'étude des opérateurs de classe C_{0}, Acta Sci. Math. 37 (1975), 313-322.
2. A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1964), 89-102.
3. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
4. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
5. E. A. Nordgren, On quasi equivalence of matrices over H^{∞}, Acta Sci. Math. 34 (1973), 301-310.
6. B. Sz.-Nagy, Diagonalization of matrices over H^{∞}, Acta Sci. Math. 38 (1976), 223-238.
7. B. Sz.-Nagy and C. Foias, Jordan model for contraction of class C.0, Acta. Sci. Math. 36 (1974), 305-322.
8. , Commutants and bicommutants of operators of class C_{0}, Acta Sci. Math. 38 (1976), 311-315.
9. \qquad , Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; Academiai Kiadó, Budapest, 1970.
10. D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179-203.
11. \qquad , Invariant subspaces and unstarred operator algebras, Pacific. J. Math. 17 (1966), 511-517.
12. M. Uchiyama, Hyperinvariant subspaces for contractions of class $C_{.0}$, Hokkaido Math. J. 6 (1977), 260-272.
13. \qquad , Double commutants of $C_{.0}$ contractions, Proc. Amer. Math. Soc. 69 (1978), 283-288.
14. P. Y. Wu, Commutants of $C_{0}(N)$ contractions, Acta Sci. Math. 38 (1976), 193-202.

Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka, 811-41, JAPaN

[^0]: Received by the editors August 12, 1977 and, in revised form, October 12, 1977.
 AMS (MOS) subject classifications (1970). Primary 47A45.
 Key words and phrases. $\mathrm{C}_{.0}$ contraction, canonical functional model, double commutant, operator valued inner function, reflexive.

