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ON UNITARY EQUIVALENCE OF
REPRESENTATIONS OF C*-ALGEBRAS

JOEL ANDERSON!

ABSTRACT. Assuming the continuum hypothesis, there are inequivalent
irreducible representations of B (JC) that are pointwise equivalent.

The purpose of this note is to present a theorem concerning equivalence of
certain representations of separable C*-subalgebras of % (J(C). It follows as a
corollary to the theorem that there are inequivalent representations of % (()
that are pointwise equivalent. This answers a question of Dixmier [3, 2.12.22].

Throughout, JC shall denote a complex separable infinite dimensional
Hilbert space and B (I() the bounded linear operators acting on JC. A state f
on B (I() is said to be diagonalizable if there is an orthonormal basis {x,:
n € w} for 3 (w denotes the natural numbers) and a free ultrafilter A of
subsets of w such that

A(T) =tim (Tx, x,), T € B, (1)

The state f induces (via the G.N.S. construction) a representation {m,, J(;, x;}
where x; denotes the canonical cyclic vector.

If @ is a unital separable C*-subalgebra of B (I(), let S (@) denote the set
of states on @ that are zero on the compact operators in &. The essential part
of the universal representation of @ is by definition the direct sum of the
representations arising from the elements of & (&).

THEOREM 1. If @ is a unital separable C*-subalgebra of B () and f is a
diagonalizable state on B (IC) with associated representation {wf, ‘JCf, xf} then,
assuming the continuum hypothesis, the restriction of m; to @ is unitarily
equivalent to the direct sum of an uncountable number of copies of the essential
part of the universal representation of &.

It is convenient to present some parts of the proof of Theorem 1 as separate
propositions.

ProposiTION 2. If @ is a unital separable C*-subalgebra of B (IC) and
f € S(®@), then there is an orthonormal sequence {y,: n € w} in IC such that

f(4) =lim (4y,,y,) )
for A in @.
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ProoFr. This is a weak version of the theorem in [1]. Alternatively, it is not
difficult to construct a proof directly using Glimm’s theorem [3, 11.2.1].

The proof of Theorem 1 utilizes the principle of transfinite induction. The
following proposition is essentially the induction step in the argument.

PROPOSITION 3. Suppose @ is a unital separable C*-subalgebra of B () and
[ is a diagonalizable state on B (IC) with associated representation {m;, 3, x;}.
If X is a separable subspace of }; and {m, 9, y} is a cyclic representation of
@ that is zero on the compact operators in @, then there is a subspace X, of ¥,
such that X, is orthogonal to X, X, reduces w(Q) and the representation
7,(- o, of @ is unitarily equivalent to =.

ProOF. Define a state g on & by

g(4) = (n(4)y,y), A€a@.

As g is zero on the compact operators in @, by Proposition 2, g has the form
(2) for some orthonormal sequence {y,: n € w} in ¥ . Since f is diagonal-
izable, there are an orthonormal basis {x,: n € w} for I and a free ultrafilter
A on w that implement f as in (1).

Choose a subsequence of w by induction as follows. Fix a countable dense
subset {4;} of @. By [2, Corollary 3] =, is irreducible, so we may choose a
countable set {7} of operators such that {7(T,)x;: k € w} is dense in K.
Select (1) in w so that

[(A¥ Tyxp, yom)l <1
and

[(7(41)y, ) = (A1 Yoy Yo)| < 1.
If 6(1), ..., o(n — 1) have been picked, choose 6(n) > o(n — 1) such that
(4T Xy yom)l <1/n forl < j<nandl <k <n
and

I(W(Aj)y,y) = (AYotnp Vo)l < 1/n forl1 < j < n.

Define an isometry ¥ on 3 by Vx, = y,,, n=1,2,..., and write
x = m(V)x,. If j and k are natural numbers, then

(ﬂ'f( Tk )Xf, 'ﬂ'f(Aj)x) = f( V*Aj* Tk ) = lgl/n ( V*Aj* Tkxn, x")
= liG{Ln (AF T, Yoimy) = 0.

Thus, if K, denotes the closed subspace spanned by {m(A4))x: j € w}, then
K, is orthogonal to K and ¥, reduces ,(@). Furthermore, if j € w, then

(m(4)x, x) = f(V*4;V)
= lgln (AP sty Yotm) = (7(4), ).
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Therefore, (m(A)x, x) = (n(A)y,y) for all 4 in @ and it follows by a
standard argument that 7 and 77,(-)|, are unitarily equivalent.

PROOF OF THE THEOREM. As 7 is zero on the compact operators, J(; has
dimension ¢, the cardinality of the continuum. Also, the separability of @
implies that S (&) has cardinality c. By the continuum hypothesis there is a
well-ordered enumeration {m,, M,, ¥, }4<,, Of the cyclic representations
arising from the states in & (@) such that for each f in §(®), the associated
representation appears in the enumeration an uncountable number of times.
(w, denotes the first uncountable cardinal.)

Let us define subspaces J(, of J(; by transfinite induction. Suppose that
for some ordinal @ < w; and all ordinals 8 < &, subspaces J(g of J(; have
been chosen such that

(1) 3G, is separable;

(@) if y < B, then J(, and J(; are orthogonal;

(3) ICq reduces 7(@);

(4) There is a unitary U, mapping J(; onto M, so that Upm(A)x =
mp(A)Ugx for A in @ and x in JCs.

Let K denote the closed subspace of J(; generated by {J(s: B < a}. As
is a countable ordinal, ¥ is separable. Hence Proposition 3 applies (with
7 = m,) and there is a subspace J(, of J(; with the required properties. The
definition is complete.

Write
n=23 &%
a<wi
and forx = 2 @ x, in I define
Ux= Y @ Ux,
a<w;

Clearly, 9 reduces 7,(€) and, for 4 in &,
U(m(A)la)U* = 2 D m(A).

a<wi
If ¢ = I we are done. If N #* I, then the representation 7(-)|or: of @
decomposes into the direct sum of cyclic representations each of which is
unitarily equivalent to some m,. It follows that the restriction of 7, to @ is
unitarily equivalent to

(2 @n)e(S @n) ®
a<w; g€T
where I consists of (perhaps repeated) elements of 5(&). As I has
cardinality ¢, 9 has cardinality at most ¢ and therefore the representation (3)
is equivalentto =,_, @ 7,.

If 7 and 7’ are representations of a C*-algebra @, then = and #’ are said to
be pointwise equivalent if 7(4) and 7'(A4) are unitarily equivalent for each 4

in @.
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COROLLARY 4. Assuming the continuum hypothesis, there are diagonalizable
states f and g on B (IC) such that w; and 7, are pointwise equivalent but not
equivalent.

PRrOOF. Fix an orthonormal basis {x,: n € w} for JC and define a map of
the free ultrafilters on w into the pure states on B () by

U lgLn (X5 Xp)-

(By [2, Corollary 3] diagonalizable states are pure.) If AU and V are distinct
ultrafilters, then there is a subset o of w that is in U but not in V. If P,
denotes the projection of JC onto the subspace generated by {x,: n € o} then

hqlln (P,x,, x,) =1 and h{p (Pyx,, x,) =0

so that the map is injective. Now there are 2° free ultrafilters on w [4], while
there are only c¢ unitary operators on J(. Therefore [3, 2.8.6] there are
diagonalizable states f and g that are not equivalent. On the other hand, by
Theorem 1, 71, and 7, are pointwise equivalent.
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