ON UNITARY EQUIVALENCE OF REPRESENTATIONS OF C*-ALGEBRAS

JOEL ANDERSON1

ABSTRACT. Assuming the continuum hypothesis, there are inequivalent irreducible representations of $\mathfrak{B}(\mathfrak{K})$ that are pointwise equivalent.

The purpose of this note is to present a theorem concerning equivalence of certain representations of separable C^* -subalgebras of $\mathfrak{B}(\mathfrak{K})$. It follows as a corollary to the theorem that there are inequivalent representations of $\mathfrak{B}(\mathfrak{K})$ that are pointwise equivalent. This answers a question of Dixmier [3, 2.12.22].

Throughout, \mathcal{K} shall denote a complex separable infinite dimensional Hilbert space and $\mathfrak{B}(\mathcal{K})$ the bounded linear operators acting on \mathcal{K} . A state f on $\mathfrak{B}(\mathcal{K})$ is said to be *diagonalizable* if there is an orthonormal basis $\{x_n: n \in \omega\}$ for \mathcal{K} (ω denotes the natural numbers) and a free ultrafilter \mathfrak{A} of subsets of ω such that

$$f(T) = \lim_{\mathfrak{A}} (Tx_n, x_n), \qquad T \in \mathfrak{B}(\mathfrak{K}). \tag{1}$$

The state f induces (via the G.N.S. construction) a representation $\{\pi_f, \mathcal{K}_f, x_f\}$ where x_f denotes the canonical cyclic vector.

If \mathscr{Q} is a unital separable C^* -subalgebra of $\mathscr{B}(\mathscr{K})$, let $\mathscr{S}(\mathscr{Q})$ denote the set of states on \mathscr{Q} that are zero on the compact operators in \mathscr{Q} . The essential part of the universal representation of \mathscr{Q} is by definition the direct sum of the representations arising from the elements of $\mathscr{S}(\mathscr{Q})$.

THEOREM 1. If $\mathfrak A$ is a unital separable C^* -subalgebra of $\mathfrak B(\mathfrak K)$ and f is a diagonalizable state on $\mathfrak B(\mathfrak K)$ with associated representation $\{\pi_f, \, \mathcal K_f, \, x_f\}$ then, assuming the continuum hypothesis, the restriction of π_f to $\mathfrak A$ is unitarily equivalent to the direct sum of an uncountable number of copies of the essential part of the universal representation of $\mathfrak A$.

It is convenient to present some parts of the proof of Theorem 1 as separate propositions.

PROPOSITION 2. If \mathscr{Q} is a unital separable C^* -subalgebra of $\mathfrak{B}(\mathscr{K})$ and $f \in \mathscr{S}(\mathscr{Q})$, then there is an orthonormal sequence $\{y_n : n \in \omega\}$ in \mathscr{K} such that

$$f(A) = \lim_{n} (Ay_n, y_n)$$
 (2)

for A in \mathfrak{A} .

Received by the editors April 21, 1978.

AMS (MOS) subject classifications (1970). Primary 46K10, 46L05.

¹Partially supported by a grant from the National Science Foundation.

PROOF. This is a weak version of the theorem in [1]. Alternatively, it is not difficult to construct a proof directly using Glimm's theorem [3, 11.2.1].

The proof of Theorem 1 utilizes the principle of transfinite induction. The following proposition is essentially the induction step in the argument.

PROPOSITION 3. Suppose $\mathfrak R$ is a unital separable C^* -subalgebra of $\mathfrak B(\mathfrak K)$ and f is a diagonalizable state on $\mathfrak B(\mathfrak K)$ with associated representation $\{\pi_f, \, \mathfrak K_f, \, x_f\}$. If $\mathfrak K$ is a separable subspace of $\mathfrak K_f$ and $\{\pi, \, \mathfrak N, \, y\}$ is a cyclic representation of $\mathfrak R$ that is zero on the compact operators in $\mathfrak R$, then there is a subspace $\mathfrak K_1$ of $\mathfrak K_f$ such that $\mathfrak K_1$ is orthogonal to $\mathfrak K$, $\mathfrak K_1$ reduces $\pi_f(\mathfrak R)$ and the representation $\pi_f(\cdot)|_{\mathfrak K_1}$ of $\mathfrak R$ is unitarily equivalent to π .

PROOF. Define a state g on \mathcal{C} by

$$g(A) = (\pi(A)y, y), A \in \mathcal{C}.$$

As g is zero on the compact operators in \mathscr{Q} , by Proposition 2, g has the form (2) for some orthonormal sequence $\{y_n: n \in \omega\}$ in \mathscr{K} . Since f is diagonalizable, there are an orthonormal basis $\{x_n: n \in \omega\}$ for \mathscr{K} and a free ultrafilter \mathscr{A} on ω that implement f as in (1).

Choose a subsequence of ω by induction as follows. Fix a countable dense subset $\{A_j\}$ of \mathscr{Q} . By [2, Corollary 3] π_f is irreducible, so we may choose a countable set $\{T_k\}$ of operators such that $\{\pi_f(T_k)x_f: k \in \omega\}$ is dense in \mathscr{K} . Select $\sigma(1)$ in ω so that

$$|(A_1^*T_1x_1, y_{\sigma(1)})| < 1$$

and

$$|(\pi(A_1)y, y) - (A_1y_{\sigma(1)}, y_{\sigma(1)})| < 1.$$

If $\sigma(1), \ldots, \sigma(n-1)$ have been picked, choose $\sigma(n) > \sigma(n-1)$ such that

$$|(A_j^*T_kx_n, y_{\sigma(n)})| < 1/n$$
 for $1 \le j \le n$ and $1 \le k \le n$

and

$$|(\pi(A_i)y, y) - (A_iy_{\sigma(n)}, y_{\sigma(n)})| < 1/n \quad \text{for } 1 \le j \le n.$$

Define an isometry V on \Re by $Vx_n = y_{\sigma(n)}$, $n = 1, 2, \ldots$, and write $x = \pi_f(V)x_f$. If j and k are natural numbers, then

$$(\pi_f(T_k)x_f, \pi_f(A_j)x) = f(V^*A_j^*T_k) = \lim_{Q_l} (V^*A_j^*T_kx_n, x_n)$$

$$= \lim_{Q_l} (A_j^*T_kx_n, y_{\sigma(n)}) = 0.$$

Thus, if \mathcal{K}_1 denotes the closed subspace spanned by $\{\pi_f(A_j)x\colon j\in\omega\}$, then \mathcal{K}_1 is orthogonal to \mathcal{K} and \mathcal{K}_1 reduces $\pi_f(\mathcal{C})$. Furthermore, if $j\in\omega$, then

$$(\pi_f(A_j)x, x) = f(V^*A_jV)$$

$$= \lim_{\substack{\emptyset \mid_L}} (A_j y_{\sigma(n)}, y_{\sigma(n)}) = (\pi(A_j)y, y).$$

Therefore, $(\pi_f(A)x, x) = (\pi(A)y, y)$ for all A in $\mathfrak A$ and it follows by a standard argument that π and $\pi_f(\cdot)|_{\mathfrak R_1}$ are unitarily equivalent.

PROOF OF THE THEOREM. As π_f is zero on the compact operators, \mathcal{K}_f has dimension c, the cardinality of the continuum. Also, the separability of \mathcal{C} implies that $S(\mathcal{C})$ has cardinality c. By the continuum hypothesis there is a well-ordered enumeration $\{\pi_{\alpha}, \mathfrak{M}_{\alpha}, y_{\alpha}\}_{\alpha < \omega_1}$ of the cyclic representations arising from the states in $S(\mathcal{C})$ such that for each f in $S(\mathcal{C})$, the associated representation appears in the enumeration an uncountable number of times. $(\omega_1$ denotes the first uncountable cardinal.)

Let us define subspaces \mathcal{H}_{α} of \mathcal{H}_{f} by transfinite induction. Suppose that for some ordinal $\alpha < \omega_{1}$ and all ordinals $\beta < \alpha$, subspaces \mathcal{H}_{β} of \mathcal{H}_{f} have been chosen such that

- (1) \mathcal{H}_{B} is separable;
- (2) if $\gamma < \beta$, then \mathcal{H}_{γ} and \mathcal{H}_{β} are orthogonal;
- (3) $\mathcal{H}_{\mathcal{B}}$ reduces $\pi_{f}(\mathcal{C})$;
- (4) There is a unitary U_{β} mapping \mathcal{H}_{β} onto \mathfrak{M}_{β} so that $U_{\beta}\pi_{f}(A)x = \pi_{\beta}(A)U_{\beta}x$ for A in \mathcal{C} and x in \mathcal{H}_{β} .

Let \Re denote the closed subspace of \Re_f generated by $\{\Re_\beta\colon \beta<\alpha\}$. As α is a countable ordinal, \Re is separable. Hence Proposition 3 applies (with $\pi=\pi_\alpha$) and there is a subspace \Re_α of \Re_f with the required properties. The definition is complete.

Write

$$\mathfrak{N} = \sum_{\alpha < \omega_1} \bigoplus \mathfrak{R}_{\alpha}$$

and for $x = \sum \bigoplus x_{\alpha}$ in \Re define

$$Ux = \sum_{\alpha < \omega} \bigoplus U_{\alpha} x_{\alpha}.$$

Clearly, \mathfrak{N} reduces $\pi_f(\mathfrak{A})$ and, for A in \mathfrak{A} ,

$$U(\pi_f(A)|_{\mathfrak{N}})U^* = \sum_{\alpha < \omega_1} \oplus \pi_{\alpha}(A).$$

If $\mathfrak{N}=\mathfrak{K}_f$ we are done. If $\mathfrak{N}\neq\mathfrak{K}_f$, then the representation $\pi_f(\cdot)|_{\mathfrak{N}^\perp}$ of \mathfrak{C} decomposes into the direct sum of cyclic representations each of which is unitarily equivalent to some π_α . It follows that the restriction of π_f to \mathfrak{C} is unitarily equivalent to

$$\left(\sum_{\alpha<\omega_1} \oplus \pi_{\alpha}\right) \oplus \left(\sum_{g\in\mathfrak{T}} \oplus \pi_g\right) \tag{3}$$

where \mathfrak{T} consists of (perhaps repeated) elements of $\mathfrak{S}(\mathfrak{C})$. As \mathfrak{R}_f has cardinality c, \mathfrak{T} has cardinality at most c and therefore the representation (3) is equivalent to $\Sigma_{\alpha < \omega_1} \oplus \pi_{\alpha}$.

If π and π' are representations of a C^* -algebra \mathcal{C} , then π and π' are said to be pointwise equivalent if $\pi(A)$ and $\pi'(A)$ are unitarily equivalent for each A in \mathcal{C} .

COROLLARY 4. Assuming the continuum hypothesis, there are diagonalizable states f and g on $\mathfrak{B}(\mathfrak{K})$ such that π_f and π_g are pointwise equivalent but not equivalent.

PROOF. Fix an orthonormal basis $\{x_n: n \in \omega\}$ for \mathcal{K} and define a map of the free ultrafilters on ω into the pure states on $\mathfrak{B}(\mathcal{K})$ by

$$\mathfrak{A}\mapsto \lim_{\mathfrak{D}_1} (\cdot x_n, x_n).$$

(By [2, Corollary 3] diagonalizable states are pure.) If $\mathfrak A$ and $\mathfrak V$ are distinct ultrafilters, then there is a subset σ of ω that is in $\mathfrak A$ but not in $\mathfrak V$. If P_{σ} denotes the projection of $\mathfrak K$ onto the subspace generated by $\{x_n: n \in \sigma\}$ then

$$\lim_{\mathfrak{I} \setminus \mathfrak{I}} (P_{\sigma} x_n, x_n) = 1 \quad \text{and} \quad \lim_{\mathfrak{I} \setminus \mathfrak{I}} (P_{\sigma} x_n, x_n) = 0$$

so that the map is injective. Now there are 2^c free ultrafilters on ω [4], while there are only c unitary operators on \Re . Therefore [3, 2.8.6] there are diagonalizable states f and g that are not equivalent. On the other hand, by Theorem 1, π_f and π_g are pointwise equivalent.

REFERENCES

- 1. J. Anderson, On vector states and separable C*-algebras, Proc. Amer. Math. Soc. 65 (1977), 62-64.
- 2. _____, Extreme points in sets of positive linear maps on $\mathfrak{B}(\mathfrak{K})$, J. Functional Analysis (to appear).
 - 3. J. Dixmier, Les C*-algèbres et leur représentations, Gauthier-Villars, Paris, 1964.
- 4. W. Rudin, Homogeneity problems in the theory of Cech compartifications, Duke Math. J. 23 (1956), 409-419.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802