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MULTIFUNCTIONS AND CLUSTER SETS

JAMES E. JOSEPH

Abstract. In this article the notion of cluster set-which has been exten-

sively studied within the framework of real and analytic function theory and

to some extent for arbitrary functions between arbitrary topological spaces

-is investigated for multifunctions. We generalize the notion of cluster set,

extend and generalize some results for cluster sets of functions, and offer

some results for multifunctions which are new for functions. In the last

section, several compactness generalizations are characterized in terms of

multifunctions and cluster sets.

1. Introduction. The notion of cluster set has received a great deal of study

within the framework of real and analytic function theory (see [1]). In [17],

Weston initiated the study of cluster sets for arbitrary functions between

topological spaces, and Hunter, in [10], offered an abstract formulation of

some theorems on cluster sets. More recently, cluster sets for functions in

general topology have been investigated by Hamlett in [4], [5] and [6]. In

these papers, interesting results have been reached which relate properties of

cluster sets of a function to the continuity properties of the function and to

the properties of the graph of the function.

A multifunction from a set X to a set Y is a function from X to <? ( Y) -

{0}, where 9(Y) is the power set of Y. Smithson [13] has contributed a

survey relating some of the principal results for multifunctions.

In this paper we extend the notion of cluster set to multifunctions, general-

ize the concept of cluster set, extend and generalize some earlier results for

cluster sets of functions and present some results for multifunctions which are

also new for functions. We also give new characterizations of compactness,

77i-compactness, Lindelöfness and //-closeness in terms of cluster sets.

2. Some preliminaries. We will denote the closure of a subset A of a space

by c\(A), the collection of open neighborhoods of A by 2(yl), and the

collection of closed neighborhoods of A by T(A). Following Velicko [16], we

say that a point x in a space is in the 9-closure of a subset A of the space

(x E cl9(A)) if each V E Y(x) satisfies A n V ¥=0, that A is 9-closed if

c\9(A) = A, and that x is in the 9-adherence of a filterbase Q on the space

(x E ad9ß) if x E cle(F) for each FEÜ. We extend the notions of

adherence, ad, and 0-adherence, writing ad £2 = D n cl(F) and ad9S2 =

D a c\g(F) for any family, S2, of subsets.
We will represent the class of all multifunctions from a set X to a set Y by

9\L(X, Y). Let X and Y be spaces and let a E ^(X, Y). We say that a is
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upper-semicontinuous at x E X if for each  W E 2(a(x)) in  Y there is a

V E 2(x) in X satisfying a(V) c W; a is upper-semicontinuous (u.s.c.) on X

if a is u.s.c. at each x E X. Smithson [14] has defined a to be weakly

upper-semicontinuous (w.u.s.c.) at x E X if for each W E T(a(x)) there is a

V G 2(x) with a(V) E W and has called a weakly upper-semicontinuous

(w.u.s.c.) on X when a is w.u.s.c. at each x E X. We say that a has closed

(9-closed) point images if a(x) is closed (f?-closed) for each x G X. As usual,

we will denote the graph of a-i.e. {(x,y): x E X andy E a(x)}-by S (a) and

say that a has a closed graph if S (a) is a closed subset of X X Y. Employing

the notion of function with a strongly-closed graph from [8] we say that a has

a strongly-closed graph if for each (x, y) E (X X Y) — § (a) there are sets

V G 2(x), W E T(y), in X and Y, respectively, with (V X W) n S (a) =0.
We say that a has a 0-closed graph if § (a) is a 0-closed subset of A1 X y In a

product space A' X Y the (2)9-closure of a subset K ((2)cle(K)) of X X Y is

{(x,y) E X X Y: all V E 2(x) and W E T(y) satisfy (V X W) n ^ =¿0);
A' is (2)9-closed if (2)cle(A:) = AT. Evidently, a G 91t(A', T) has a strongly-

closed graph if and only if § (a) is a (2)0-closed subset of X X Y. If A c X,

B EY, Ac ^P(A-), Vc 9(7), then a(^l) = IJ xeA a(x), a~x(B) = {x G

X: a(x) n 5 ¥= 0), a(A) = (a(^): ^ G A) anda_,(V) = {a'^B): B G V).

3. Multifunctions, cluster sets, graph and continuity properties. Let X and Y

be spaces and let a G £DH(Ar, y). Utilizing Weston's definition [17] as a model

we define the cluster set of a at x E X to be 6(a; x) = ad a(2(x)). General-

izing this notion we define the strong cluster set of a at x E X to be S (a;

x) = adtf a(2(x)) and the 9-cluster set of a at x G X to be 9"(a; x) =

ads a(r(x)). In Lemma 3.1 we relate Q(a; x), S (a; x) and ^(a; x) to a(x).

We prove only statement (a) as the proofs of the other statements are similar;

the projection from X X Y onto Y is represented by try.

3.1. Lemma. Let X, Y be spaces and let a E <3Tl(Ar, Y). Then

(a) G(a; x) = try(({x) X Y) n cl(§(a))) for each x E X.

(b) S (a; x) = w,(({x} X Y) n (2)cl9(§ (a))) for each x E X.

(c) ^(a; x) = ^(({x} X Y) n cl9(S(a)))/or eacA x G X.

Proof of (a). Let x G A1, >> G Q(a; x) and let IF G ~Z(y). Then for any

FG2(x) we have Wr\a(V)¥=0. Thus (K X WO n S(a) ¥- 0. This
shows that (x,.y) G cl(§(a)) and, consequently, that y E ^(({x} X Y) n

cl(S(a))). The steps in the above proof may be reversed to establish the

reverse inclusion.

The proof is complete.

In the first three theorems in this section we characterize multifunctions

with closed graphs, strongly-closed graphs and 0-closed graphs in terms of

cluster sets. The proofs of Theorems 3.3 and 3.4 are similar to that of

Theorem 3.2 and are omitted.

3.2. Theorem. The following statements are equivalent for spaces X, Y and

a G 9IL(A-, Y):
(a) The multifunction a has a closed graph;

(b) a(x) = ^(((x) X Y) n cl(S (a))) for each x E X.

(c) G (a; x) = a(x)for each x E X.
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Proof that (a) implies (b). Obvious.

Proof that (b) implies (c). This follows from Lemma 3.1 (a).

Proof that (c) implies (a). Let (x,y) E (X x Y) - §(a). Thenj> £ a(x),

soy G G (a; x). Thus there are sets V G Six) in X and W G I,(y) in Y with

a(V) f\W = 0. This gives (V X W) n §(a) = 0.
The proof is complete.

3.3. Theorem. The following statements are equivalent for spaces X, Y and

a E <iJl(X, Y):

(a) The multifunction a has a strongly-closed graph;

(b) a(x) = iry(({x) X Y) n (2)cl9(g(a)))/or eac/i x E X.

(c) S (a; x) = a(x) for each x E X.

3.4. Theorem. The following statements are equivalent for spaces X, Y and

a G Vl(X, Y):
(a) The multifunction a has a 6-closedgraph;

(b) a(x) = <ny(({x) X Y) n cl9(§ (a))) for each x E S.

(c) *ö(a; x) = a(x)for each x E X.

Theorem 3.5 gives a characterization of the 0-closure of a subset of a space,

and will be utilized in establishing several of our main results.

3.5. Theorem. If K is a subset of a space X then cle(K) = ad 2(K).

Proof. If V E 2(K) then cle(K) c cls(K); so we have cle(K) c cl(F)
since the 0-closure of an open set coincides with its closure [16]. Thus

cle(K) c ad 2Z(K). Now suppose x G cle(K). There is a W E 2Z(x) satisfying

x G W e cl(W) E X - K It follows that xíad 2(t\~) since * - cl(^) G
S(tV). The proof is complete.

Our next results are two of our main results and relate continuity properties

of multifunctions to cluster sets.

3.6. Theorem. If X and Y are spaces and a E <31t(Ar, Y) is u.s.c. then S (a;

x) = cle(a(x)) for each x E X.

Proof. Clearly cle(a(x)) c S (a; x) for each x E X. On the other hand, we

see that the f¡herbase a(?,(x)) is stronger than the filterbase 1,(a(x)) in Y

since a is u.s.c. Thus S (a; jc) c ad ~2(a(x)) = cle(a(x)) (see Theorem 3.5).

The proof is complete.

Combining Theorem 3.6 and Theorem 3.3 we easily obtain the following

result.

3.7. Theorem. ^Iti u.s.c. multifunction has a strongly-closed graph if and only

if it has 9- closed point images.

Since f?-closure and closure coincide for subsets of a regular space the

following result due to Smithson [15] is obtained as a consequence of

Theorems 3.7 and 3.2.

3.8. Corollary. If X and Y are spaces with Y regular and a E ^(X, Y) is

u.s.c. with closed point images, then a has a closed graph.

Utilizing the fact that a space is T2 if and only if its points are f?-closed we
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reach the following realization of Herrington and Long [9] as a consequence

of Theorem 3.7.

3.9. Corollary. A continuous surjection has a strongly-closed graph if and

only if it has a Hausdorff image.

The proof of the following theorem is omitted as it is similar to that of

Theorem 3.6.

3.10. Theorem. If X and Y are spaces, each w.u.s.c. a G <5H(Ar, Y) satisfies

Q(a; x) E clg(a(x)) for each x E X.

Combining Theorem 3.10 with Theorem 3.3 we obtain the following

corollary.

3.11. Corollary. A w.u.s.c. multifunction with 9-closedpoint images has a

closed graph.

Corollary 3.11 generalizes the following result due to Noiri [11].

3.12. Corollary. A weakly-continuous function into a Hausdorff space has a

closed graph.

4. Multifunctions, cluster sets and compactness generalizations. In this

section we will characterize compactness, Lindelöfness, m-compactness and

//-closedness in terms of multifunctions and cluster sets. We also provide

some consequences of these characterizations. We will have need for the next

definition.
4.1. Definition. If X and Y are spaces, K e X and a G 9H(A', Y), we

define (a) G(a; K) = UxeK Q(a; x), (b) S (a; A') = U xeK S (a; x) and (c)

%(a;K)= UxeK$(a;x).

The first theorem in this section is preliminary to Theorem 4.3, the first

main result in the section. We recall that a subset A' of a space X is

m-compact for an infinite cardinal m if each cover of K by at most m open

subsets of X contains a finite subcollection which covers K; it is not difficult

to show that K is m-compact if and only if each filterbase ß on K with

cardinality at most m satisfies K n ad ß ¥= 0. Theorem 4.2 gives another

characterization of m-compact subsets. The proof is omitted.

4.2. Theorem. A subset K of a space is m-compact if and only if for each

filterbase ß on (he space such that ß has at most m elements and such that

F n V¥=0 is satisfied for each F E ß and V G 2(AT), we have K n ad ß

¥=0.

In the sequel, if A is a nonempty set, x0 G X and ß is a filterbase on X we

represent X with the topology {A c X: x0 G A or F c A for some F E ß}
by X (x0, ß). We recall that a space X has character m for an infinite cardinal

m if for each x E X there is a local base of open sets at x with cardinality at

most m.

4.3. Theorem. The following statements are equivalent for a space X and

infinite cardinal m:

(a) X is m-compact.
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(b) Q(a; K) = ad a(I,(K)) for each space Y with character m, a G

°H(X, Y) and closed K C X.
(c) Q(a; K) is closed in Y for each space Y with character m, a E <3ît(Ar, Y)

and closed K c X.

Proof that (a) implies (b). Let X and Y be any spaces, let K c X and let

a E m.(X, Y). For each x E K we have S(/V) c 2(x), so a(2(/Y)) c

a(2(x)) and, consequently, C(a; x) = ada(2(jc)) E ad a(2Z(K)) and ¿(a;

K) c ad a(S(/Y)). Now let X be w-compact, 7 have character m, and let

K e X be closed. Let z E ad a(2(/V)) and let A be a local base at z of

cardinality at most ttj. Then for each IfGA and V E 2(Ä") in X we have

a~x(W) n V ¥= 0. So a ~ '(A) is a filterbase on X which along with the closed

(and thus 777-compact) subset K satisfies the hypothesis of Theorem 4.2. This

implies that K n ad a-'(A) ¥= 0. For each x G K n ad aT'(A) we have

V C\ a~x(W)¥ 0 and, consequently, a(F) n W ¥= 0 for each F G 2(x) in

X and If G A. Thus z E Q(a; x). The proof that (a) implies (b) is complete.

Proof that (b) implies (c). Obvious.

Proof that (c) implies (a). Let ß be a filterbase of cardinality at most 771

on X. Let y0 G X, let Y= X u {y0) and let a E 9H(jr, y(>>0, ß)) be the
identity function. It is straightforward to check that Y(y0, ß) has character

m. Hence from hypothesis Q(a; X) is closed in Y(y0, ß) and we see that

y0 G cl(ß(a; A^.Thus^Q- G G(a; x) for some x E X. For such an x we have

V n F = V n (F u {.y,,}) =* 0 for each K G 2(x) and F E fi. So ad ß ^

0. The proof that (c) implies (a) is complete.

The proof of the theorem is complete.

The following corollary is a consequence of Theorem 4.3.

4.4. Corollary. The following statements are equivalent for a space X:

(a) X is compact.

(b) 6(a; K) = ad a(2(AT)) for each space Y, a E ^l(X, Y) and closed

K C X.
(c) (2(a; K) is closed in Y for each space Y, a E tDTL(Ar, Y) and closed

K EX.

Theorem 4.5 is an analogue of Theorem 4.2 for Lindelöf subsets and is

preliminary to Theorem 4.6, another of the main results of this paper.

4.5. Theorem. A subset K of a space is Lindelöf if and only if for each

filterbase ß on the space such that / n V ¥=0 is satisfied by each V G 2(/Y)

and countable intersection, I, of elements of Q, we have K n ad Q ¥z0.

Proof. Sufficiency. Obvious.
Necessity. Assume that K n ad ß =0. Then for each x E K there is a

V(x) E 2(x) and F(x) E ß such that V(x) n F(x) =0; {V(x): x E K) is

an open cover of K. Let K* c K be countable such that {V(x): x G K*)

covers K and let / = n K* F(x)- Then /n UP V(x) =0 and U *• V(x) E
2(/V). This is a contradiction of the hypothesis on ß. The proof is complete.

We recall that a space is a 9 -space in the sense of Gillman and Jerison [3]

if each GB is open.

4.6. Theorem. The following statements are equivalent for a space X:
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(a) X is Lindelöf.
(b) 6(a; K) = ad a(2(K)) for each espace Y, a G 91t(A-, Y) and closed

K EX.

(c) &(a; K) is closed in Y for each 9 -space Y, a E 9\l(X, Y) and closed

K EX.

Proof that (a) implies (b). We know that G(a; K) c ad a(2,(K)) for any

spaces X and Y, K c X and a E 911 (A", Y) (see proof of Theorem 4.3). If X
is Lindelöf, y is a 9 -space, K c X is closed and a E 911 (X, Y), then for

each z E ad a(2(AT)) we see that a"'(2(x)) is a filterbase on X which along

with the Lindelöf subset A' satisfies the hypothesis of Theorem 4.5. This

implies that K n ad a~'(2(z)) ¥=0. For each x G K n ad a"'(2(z)) we

have V n a~x(W) ¥=0 and, consequently, a(V) n ^=^0 for each F G

2(x) in A and W E 2(z). Thus z G <2(a; x). The proof that (a) implies (b) is
complete.

Proof that (b) implies (c). Obvious.

Proof that (c) implies (a). Let ß be a filterbase on X with the countable

intersection property and let ß* be the filterbase of countable intersections of

elements of ß. Choose y0 & X, let Y - X u {y0} and ^et a G

91t(A", Y(y0, il*)) be the identity function. Y(y0, ß*) is a <? -space. Since

ad ß = ad ß* the rest of the proof proceeds as the proof of (c) implies (a) of

Theorem 4.3.

The proof of the theorem is complete.

Corollary 4.7 is a consequence of Theorems 3.2 (c) and 4.3.

4.7. Corollary. Let X be a space and Y be a space with character m. If

a E 91t(A, Y) has a closed graph then a(K) is closed in Y for each m-compact

K EX.

Proof. Q(a; K) = (JxeK Q(a; x) = \Jx&Ka(x) = a(K). The proof is
complete.

4.8. Corollary. Let X and Y be spaces. If a E 9H(Ar, Y) has a closed

graph then a(K) is closed in Y for each compact K c X.

Corollary 4.9 is a consequence of Theorems 3.2 (c) and 4.6.

4.9. Corollary. If X is a space, Y a $-space and a G 9IL(Ar, Y) has a

closed graph, than a(K) is closed for each Lindelöf K c X.

By the use of techniques similar to those used in the proof of Theorem 4.3,

the following theorem may be proved.

4.10. Theorem. A space X is m-compact if and only if S (a; K) =

ad9 a(2(K)) for each space Y with character m, a E 9IL(Ar, Y) and closed

K EX.

4.11. Corollary. A space X is compact if and only if S (a; K) =

ad9 a(2(K))for each space Y, a G 91t(A, Y) and closed K c X.

The next theorem may also be proved.

4.12. Theorem. A space X is Lindelöf if and only if§>(a;K) = ade a(2(A'))
for each <$ -space Y, a E 911 (A, Y) and closed K EX.
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4.13. Definition [12]. A subspace A of a space X is quasi H-closed relative

to X if for each cover 9 of A by open subsets of X there is a finite 9* c 9 with

A C cl( U »• I7)- If X is quasi //-closed relative to X we say simply that X is

<7Mí7j/ H-closed. A Hausdorff quasi //-closed space is called H-closed.

Herrington [7] has shown that A is quasi //-closed relative to a space X if

and only if each filterbase ß on A satisfies A n ads ß ¥=0. In Theorem 4.14

we give another characterization of subspaces which are quasi //-closed

relative to a space. If A" is a space and K c X, we recall that K is a regular

closed subset if K is the closure of an open subset of X. We let V(K) denote

the collection of regular closed subsets which contain K.

4.14. Theorem. A subset K of a space X is quasi H-closed relative to X if

and only if for each filterbase ß on X such that F f) C ¥=0 is satisfied for each

F EÜandC G V(K), we have K n ad9 ß ¥-0.

Proof. Sufficiency. Obvious.

Necessity. Suppose that K n ade ß =0. Then for each x E K there is a

V(x) E 2(x) and an F(x) E ß with cl(F(x)) n F(x) =0. Since K is quasi

//-closed relative to X there is a finite K* e K with K c UK* cl(V(x)).

Choose F* G ß with F* c fl*. F(x). Then F* n U*. cl(K(x)) =0 and
U /f. cl( V(x)) E V(K). Thus ß does not satisfy the hypothesis.

The proof is complete.

We use Theorem 4.14 together with Theorem 3.5 to prove Theorem 4.15
which improves the result of Velicko [16] that a f?-closed subset of an

//-closed space is quasi //-closed relative to the space.

4.15. Theorem. // X is a quasi H-closed space and K c X then cl9(K) is

quasi H-closed relative to X.

Proof. Let ß be a filterbase on X and suppose that F n C ¥=0 is satisfied
for each F G ß and C G V(cl9(K)). Then for V, W G U a ^(F) and C G

T(K) we have (V n W) n C ¥= 0. Hence Q* = {V n Q: V E U a 2(F),
Q E 2(tx3} is an open filterbase on X; consequently, ad ß* ¥= 0. Since

ad ß* c ad„ ß n ad 2(/Q and ad 2(Ä") = cl9(K) from Theorem 3.5 the
proof is complete.

Theorem 4.16 is our next main theorem.

4.16. Theorem. The following statements are equivalent for a space X:

(a) X is quasi H-closed.

(b) <ÏÏ(a; clg(K)) D àd9 a(V(c\9(K))) for each space Y, a E ^(X, Y) and
K EX.

(c) <5(a; K) D ad9 a(V(K))for each space Y, a G <?fl(X, Y) and 9-closed
K EX.

Proof that (a) implies (b). If X is quasi //-closed, Y is any space, K c X

and a E 91t(A\ Y), we see for each z G ade a(V(cl9(K))) that a"'(r(z)) is a

filterbase on X which along with cl9(K) (quasi //-closed relative to X from

Theorem 4.15) satisfies the hypothesis of Theorem 4.14. This gives cle(K) n

ad„ a"'(r(z))^0. For each x E cle(K) n ad9 a'x(T(z)) we have V n

ct~x(W)¥z0 and, consequently, ct(V) n W ¥=0 for each V E T(x) in X and

H7 G T(z) in K. Thus z G 9"(a; x). The proof that (a) implies (b) is complete.
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Proof that (b) implies (c). Obvious.

Proof that (c) implies (a). Let ß be a filterbase on X. Let y0 G X, let

y = X u {y0} and let a E 9IL(A', y(j>0, ß)) be the identity function;
ad9 a(V(X)) = cl9(A') in Y(y0, ß), X is 0-closed in X and >>0 G cL,(X) in

y(>^0, ß). Thus by hypothesis we have>>0 G ^(a; X). Choose x G X such that

y0 G 9"(a; x). Then if V G T(x) in X and F E ß we have F u {y0} E T(y0)

in Y(y0, ß); since a(V) = F we have F n F = CnfFu {>0}) ¥=0. The
proof that (c) implies (a) is complete.

The proof of the theorem is complete.

Theorem 4.17 is the last one of the main results in this paper.

4.17. Theorem. The following statements are equivalent for a Hausdorff space

X:
(a) X is H-closed.

(b) For each space Y, a(cle(K)) is 9-closed in Y for each K E X and

a G 91L(A", Y) with a 9-closed graph.

(c) For each space Y, each a E 9IL(Ar, Y) with a 9-closed graph maps

9-closed subsets onto 9-closed subsets.

Proof that (a) implies (b). Let X be //-closed, Y be any space, a G

91L(Ar, Y) have a 0-closed graph and K e X. If z G cl9(a(cle(K))) then

a~'(r(z)) is a filterbase on X which along with clfl(A"), which is quasi

.//-closed relative to X by Theorem 4.15, satisfies the conditions placed on ß

in Theorem 4.14. Hence cL,(A") n ad9 a"'(r(z)) ¥=-0- For any x G cl9(K) n

ad9a_1(r(z)) we have V n a~x(W)¥:0 and, consequently, (V X W) n

§(a) ¥-0 for each V E T(x) in X and W G T(z). So (x, z) G cl,(g (a)) =
§ (a) and z G a(x). The proof that (a) implies (b) is complete.

Proof that (b) implies (c). Obvious.

Proof that (c) implies (a). Let ß be a filterbase on X. Employing Y(yxy, ß)

and a E 9IL(A', Y(y0, ß)) as defined in the proof of (c) implies (a) of
Theorem 4.16, we see that>>0 G cl9(a(A')) - a(X). We conclude that a does

not have a f?-closed graph. Since X is Hausdorff there is an x G X such that

>>0 G ad9(r(x)) in Y(y0, ß) for T(x) in X. For such an x, each V E T(x) in X

and F E ß satisfy V n F ¥=0, i.e. x E ad9 ß. The proof that (c) implies (a)
is complete.

The proof of the theorem is complete.
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