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ALMOST ALL 1-SET CONTRACTIONS HAVE A FDŒD POINT

G. J. BUTLER1

Abstract. The 1-set contractions and strict set contractions of a bounded,

closed, convex subset C of a Banach space X are generalizations of the

nonexpansive mappings and the Banach contractions of C, defined in terms

of the measure of noncompactness of bounded subsets of X. Vidossich has

shown that "almost all" nonexpansive mappings of C into itself have fixed

points. In this note we establish a similar generic result for the 1-set

contractions of C.

1. Introduction. Let A be a Banach space with norm || • ||. For an arbitrary

bounded subset S of X, the measure y(S) of noncompactness of S, in-

troduced by Kuratowski [6] is defined by

f ç\ = • f M ** Q-     mere ls a finite cover of S )
^   ' \ by sets of diameter no greater than «5 J '

Let C be a fixed, closed, bounded, convex subset of X. If / is a continuous

self-map of C and k > 0, / is called a k-set contraction of C if for all S c C,

we have y(f(S)) < ky(S), where/(S) denotes the image of S under/. Let

(%, d) be the space of 1-set contractions of C into itself with the metric d

defined by d(f,g) = supxec\\fx - gx\\. 91 is a complete metric space

containing the set <2 of all strict-set contractions of C into itself (k-set

contractions with k < 1). As particular subspaces of 91, Q, respectively, we

have the nonexpansive mappings 911 of C and the Banach contractions % of

C, where

% = (/: c^ C; ||/x -fy\\ <||x - y\\, x,y E C),

f: C -» C;     there exists k < 1 such thatcry- _

\\fx-fy\\<k\\x-y\\,x,yEC

For any class & of self-maps of C, let ^(â) denote the subclass of those

maps / of & which have a fixed point in C, i.e., /x0 = x0 for some x0 G C. Of

course we have <$(%) = % and it is well known that f((2) = G [3], and if X

is uniformly convex, ̂ (911) = 91L[1], [4], [5].

Vidossich [8] has shown that for any arbitrary Banach space X, almost all

(in the sense of category) nonexpansive self-mappings of C have fixed points;

that is ^(911) is residual in 9H (contains a countable intersection of open
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dense subsets of 911). Recently, De Blasi and Myjak [2] have proved the even

stronger result that there is a residual subset 91tn of 9H such that for all

/ G 91Lg,/has a unique fixed point x0 and/"x -» x0 as n —» co, for all x E C.

In this note we shall extend the Vidossich result to the 1-set contractions of

C into itself, that is we shall prove

Theorem. 5"(9c) is residual in 91.

2. Definitions and preliminary results. For subsets S of C, we shall denote

their closure by S and their convex closure by co(S), and for r > 0, B(S; r)

will be {x E C: \\x - y\\ < r for some.y G S}. Thus if S = {x0), B(x0; r) is

the closed ball about x0 of radius r, and if r = 0, B(S; r) = S. We recall the

definition of the Hausdorff metric on the set of nonempty subsets of C: if

S, T c C, S ^07^ r, then

p(S, T) = inf{£ > 0: S c B(T; e) and 7 c t5(S; e)}.

The following lemma lists some well-known results involving the measure y of

noncompactness (see [7]).

Lemma 1. Let S be a bounded, nonempty subset of X. Then

(a) y(S) = 0 iff S is compact.

(b) y(B(Sj r)) < y(S) + 2r.

(c) Y(co(S)) = y(S).

(d) Let A0D Ax Z) A2Z) . . . be a decreasing sequence of closed, nonempty

subsets of C, such that lim„^00 y(A„) = 0. Then A = D "_r/l„ is compact and

nonempty, and lim,,^^ An= A in the Hausdorff metric.

Let g E Q (the strict-set contractions of C) and let e > 0. We define the

sequences Z>„£ = D*(g), n = 0, 1, . . . , as follows:

D¿ = C,D¿ = co (B(g(D¿_x);e)),       »-1,2,....

We make the following observations:

(i) For each e > 0, D¿ d D\ D D2 d . . . is a decreasing sequence of

closed, nonempty subsets of C.

(ii) If 0 < e < n, then D< c A?, n = 0, 1, 2,_

For e = 0, we have the following

Lemma 2.

(a) /f = n^oAÜ ** a nonempty, compact, convex subset of C, invariant

under g, and g has a fixed point in K.

(b) Given a natural number n, there exists a natural number mx = mx(g, n)

such that D° c t5(t^; l/n),for m > mx.

Proof, (a) was first shown by Darbo [3] and is a consequence of Lemma 1

and the Schauder fixed point theorem, (b) follows from (a), and part (d) of

Lemma 1.

Next we establish a kind of continuity result for D„ as e -»0 and m-* co.
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Lemma 3. Let g E G, K = K(g) as defined in Lemma 2, and let n be a

natural number. Then there exists a natural number m2 = m2(g, n) such that

for allp > m > m2we have Dpx/m c B(K; l/n). Thus lim^n^^, D'm = Kin

the Hausdorff metric.

Proof, g is a k-set contraction of C for some k < 1. Let y(C) = c. Then

y(g(Q) < ky(C) = kc, and so y(co(5(g(C); 1/m))) < kc + 2/m, by

Lemma 1, that is y(D¡/m) < kc + 2/m. It is easily established by induction

on p that (1) y(Dx/m) < k"c + (2/m)(l/(l - k)), p = 1, 2, . . . . Let D =

D(g) = C\™=xD^m. We note that Dj/m is a decreasing sequence of closed,

convex, nonempty subsets of C, and by (1),

y(/)J/m) = Acmc + (2/m)(l/(l - k))^0   asm^oo.

By Lemma 1(d), D is a nonempty, compact, convex set and limm_00 D^/m =

D in the Hausdorff metric. D also contains K since Z)J/m D D° D Í,

m = 1, 2, ... . Thus it will suffice to show that D = K and then apply

Lemma 2(b) in order to obtain Lemma 3.

Since Dj/m is invariant under g for each m, it follows that D is invariant

under g. Since D is also compact and convex, we have D d co(g(Z))). Let

e > 0 be given. Since g is continuous and D is compact, there exists 17 = t](e)

> 0 such that for any x,y E B(D; tj) with ||x - y\\ < 17, we have || gx — gy\\

< e/2. Then g(ß(/3; tj)) c B(g(D); e/2), and since £>Ji/m c £(/); tj) for m

sufficiently large, we have g(D„/m) c B(g(D); e/2) and so

DxSrl E DXJ?X = co(B(g(D^);l/m))

E co(B(g(D); e/2+l/m)) c co(B(g(D); e) )

for w sufficiently large.Thus £> = n£=1Z>J/m C coÇg(g(Z)); e)). Since this

holds for arbitrary e > 0 and since ne>0co(B(g(D); e)) = co(g(/))), we

find that D c co(g(D)) c /), and so D = co(g(D)). We have D c C and

therefore D = co(g(Z))) c co(g(C)) = Dx   and inductively we find D c

Z>°, »1 = 0, 1, 2.Thus we have D c (\%=0Dm = K E D, and so D =

K. The lemma now follows.

Lemma 4. Let g E G. Let K = K(g), m2 = m2(g; n), n = 1, 2, . . . , be as

in Lemma 3. Then if h E G with d(h,g) < l/m2, we have K(h) E

B(K(g); l/n).

Proof. For all x G C, we have \\hx - gx\\ < l/m2. Therefore h(C) c

B(g(C); l/m2),andso

Dx°(h) = co(nJC)) E co( B(g(C); 1 / m2)) = Dx^(g).

Similarly, we have h(Dx°(h)) c B(Dxx/m\g); l/m2), and we inductively

obtain D°(h) c D^/m2(g), m= 1,2,_Thus for m > m2, we have

Dl(h)EDxJ^(g)EB{K(g);l/n)

and so K(h) c B(K(g); l/n).



356 G. J. BUTLER

Before proceeding to the proof of the theorem, we note the trivial

Lemma 5. Q is dense in 91.

Proof. W.l.o.g. O E C. Then for any / G 91, e > 0, g = (1 - e/2)/ is a

(1 - e/2)-set contraction of C and d(f, g) < e.

3. Proof of the theorem. We modify the arguments used in [2], [8]. For each

g E G and each natural number ti, let K(g), m2 = m2(g, ri) be as in Lemma

4. Define Un(g) to be {/ G 91: d(f,g) < 2~nm2x) and define % to be

D "_ i U geei/n(g). By Lemma 5, 9^ is a dense Gs subset of 91 and to prove

the theorem it remains to show that 9lq c ÍF(9l).

Let/ G %, and let g„ E Q be such that/ G Un(gn), n = 1, 2,-Define

ti, to be 1 and choose n2 > 2 so large that 2~"*(m2(g„2, I2))-1 <

2-\m2(gx, I))"1. Then d(gx,gn) < d(gx,f) + d(f,g„) < (m2(g\, l))~x. It

follows from Lemma 4 that K2 c B(KX; 1) where Kx = K(gx), K2 = K(gn^).

Inductively, if »,,. .., n¡ have been chosen, choose nJ+x > 2nj sufficiently

large that

2-n^(m2(g„i+¡,nJ+x)y{<2-''im2(gnj,nJ)y\

We find that

d(&¡> 8nj+l) <  2X-"j{m2(gv 71,))"' < (77!2(g^, «,))"'

and so Kj+X c B(Ky l/nj), where K, = K(g„), i =1,2,... J + 1. Let 15 =

S^I/ti,. Then ry < 2r=721-' < 00,/ = 1, 2, .... We note that B(KJ+l; rJ+x)

C B(Ky, rf), j = 1, 2, ... . Choose Xj E Kj such that g Xj = xp and let

Sj ={xi)'*Lj. Then Sx D S2D . . . is a decreasing sequence of nonempty

closed subsets of C, and S, c B(Ky, rf),j = 1, 2, . . . . Therefore y(Sj) < 2rj

-»0 as/^00, and hence from Lemma 1(d), there exists a point x0 G

DfZ, \Sj, and so there is a subsequence which we again label x, such that

lirny^^, Xj = x0. Thus limy^^ fxy = fx0. On the other hand,

IIA - *J <„&iXJ - XÄ + \UXJ - Zn,Xj\\

<2-^(77i2(gv7i,))_U0as      /-»oo.

It follows that /jc0 = x0, and so / G f(9l). The proof of the theorem is

complete.
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