ALMOST ALL 1-SET CONTRACTIONS HAVE A FIXED POINT

G. J. BUTLER ${ }^{1}$

Abstract

The 1 -set contractions and strict set contractions of a bounded, closed, convex subset C of a Banach space X are generalizations of the nonexpansive mappings and the Banach contractions of C, defined in terms of the measure of noncompactness of bounded subsets of X. Vidossich has shown that "almost all" nonexpansive mappings of C into itself have fixed points. In this note we establish a similar generic result for the 1 -set contractions of C.

1. Introduction. Let X be a Banach space with norm $\|\cdot\|$. For an arbitrary bounded subset S of X, the measure $\gamma(S)$ of noncompactness of S, introduced by Kuratowski [6] is defined by

$$
\gamma(S)=\inf \left\{\begin{array}{ll}
\delta \geqslant 0: & \text { there is a finite cover of } S \\
\text { by sets of diameter no greater than } \delta
\end{array}\right\} .
$$

Let C be a fixed, closed, bounded, convex subset of X. If f is a continuous self-map of C and $k \geqslant 0, f$ is called a k-set contraction of C if for all $S \subset C$, we have $\gamma(f(S)) \leqslant k \gamma(S)$, where $f(S)$ denotes the image of S under f. Let (\mathcal{T}, d) be the space of 1 -set contractions of C into itself with the metric d defined by $d(f, g)=\sup _{x \in C}\|f x-g x\|$. $\mathfrak{\pi}$ is a complete metric space containing the set \mathcal{C} of all strict-set contractions of C into itself (k-set contractions with $k<1$). As particular subspaces of $\mathfrak{\Re}, \mathcal{C}$, respectively, we have the nonexpansive mappings \mathfrak{N} of C and the Banach contractions \mathscr{K} of C, where

$$
\begin{aligned}
\mathfrak{N} & =\{f: C \rightarrow C ;\|f x-f y\| \leqslant\|x-y\|, x, y \in C\} \\
\mathscr{K} & =\left\{\begin{array}{ll}
f: C \rightarrow C ; & \text { there exists } k<1 \text { such that } \\
& \|f x-f y\| \leqslant k\|x-y\|, x, y \in C
\end{array}\right\} .
\end{aligned}
$$

For any class \mathscr{Q} of self-maps of C, let $\mathscr{F}(\mathbb{Q})$ denote the subclass of those maps f of \mathscr{Q} which have a fixed point in C, i.e., $f x_{0}=x_{0}$ for some $x_{0} \in C$. Of course we have $\mathcal{F}(\mathscr{K})=\mathscr{K}$ and it is well known that $\mathscr{F}(\mathcal{C})=\mathcal{C}[3]$, and if X is uniformly convex, $\mathscr{F}(\mathscr{T})=\mathscr{T}[1],[4],[5]$.

Vidossich [8] has shown that for any arbitrary Banach space X, almost all (in the sense of category) nonexpansive self-mappings of C have fixed points; that is $\mathscr{F}(\mathscr{T})$ is residual in \mathfrak{K} (contains a countable intersection of open

Received by the editors August 25, 1977.
AMS (MOS) subject classifications (1970). Primary 54H25, 54E40.
Key words and phrases. Fixed points, \boldsymbol{k}-set contractions, genericity.
${ }^{1}$ Supported in part by NRC grant no. A-8130.
dense subsets of \mathfrak{N}). Recently, De Blasi and Myjak [2] have proved the even stronger result that there is a residual subset \mathscr{R}_{0} of \mathfrak{N} such that for all $f \in \mathscr{N}_{0}, f$ has a unique fixed point x_{0} and $f^{n} x \rightarrow x_{0}$ as $n \rightarrow \infty$, for all $x \in C$.

In this note we shall extend the Vidossich result to the 1 -set contractions of C into itself, that is we shall prove

Theorem. $\mathscr{F}(\Re)$ is residual in $\mathfrak{\Re}$.
2. Definitions and preliminary results. For subsets S of C, we shall denote their closure by \bar{S} and their convex closure by $\operatorname{co}(\bar{S})$, and for $r \geqslant 0, B(S ; r)$ will be $\{x \in C:\|x-y\| \leqslant r$ for some $y \in S\}$. Thus if $S=\left\{x_{0}\right\}, B\left(x_{0} ; r\right)$ is the closed ball about x_{0} of radius r, and if $r=0, B(S ; r)=S$. We recall the definition of the Hausdorff metric on the set of nonempty subsets of C : if $S, T \subset C, S \neq \varnothing \neq T$, then

$$
\rho(S, T)=\inf \{\varepsilon \geqslant 0: S \subset B(T ; \varepsilon) \text { and } T \subset B(S ; \varepsilon)\} .
$$

The following lemma lists some well-known results involving the measure γ of noncompactness (see [7]).

Lemma 1. Let S be a bounded, nonempty subset of X. Then
(a) $\gamma(S)=0$ iff \bar{S} is compact.
(b) $\gamma(B(S ; r)) \leqslant \gamma(S)+2 r$.
(c) $\gamma(\operatorname{co}(\bar{S}))=\gamma(S)$.
(d) Let $A_{0} \supset A_{1} \supset A_{2} \supset \ldots$ be a decreasing sequence of closed, nonempty subsets of C, such that $\lim _{n \rightarrow \infty} \gamma\left(A_{n}\right)=0$. Then $A=\cap_{n=0}^{\infty} A_{n}$ is compact and nonempty, and $\lim _{n \rightarrow \infty} A_{n}=A$ in the Hausdorff metric.

Let $g \in \mathcal{C}$ (the strict-set contractions of C) and let $\varepsilon \geqslant 0$. We define the sequences $D_{n}^{e}=D_{n}^{e}(g), n=0,1, \ldots$, as follows:

$$
D_{0}^{\varepsilon}=C, D_{n}^{\varepsilon}=\operatorname{co} \overline{\left(B\left(g\left(D_{n-1}^{\varepsilon}\right) ; \varepsilon\right)\right)}, \quad n=1,2, \ldots
$$

We make the following observations:
(i) For each $\varepsilon \geqslant 0, D_{0}^{\varepsilon} \supset D_{1}^{\varepsilon} \supset D_{2}^{\varepsilon} \supset \ldots$ is a decreasing sequence of closed, nonempty subsets of C.
(ii) If $0 \leqslant \varepsilon \leqslant \eta$, then $D_{n}^{\varepsilon} \subset D_{n}^{\eta}, n=0,1,2, \ldots$

For $\varepsilon=0$, we have the following
Lemma 2.
(a) $K=\cap_{m=0}^{\infty} D_{m}^{0}$ is a nonempty, compact, convex subset of C, invariant under g, and g has a fixed point in K.
(b) Given a natural number n, there exists a natural number $m_{1}=m_{1}(g, n)$ such that $D_{m}^{0} \subset B(K ; 1 / n)$, for $m \geqslant m_{1}$.

Proof. (a) was first shown by Darbo [3] and is a consequence of Lemma 1 and the Schauder fixed point theorem. (b) follows from (a), and part (d) of Lemma 1.

Next we establish a kind of continuity result for D_{m}^{ε} as $\varepsilon \rightarrow 0$ and $m \rightarrow \infty$.

Lemma 3. Let $g \in \mathcal{C}, K=K(g)$ as defined in Lemma 2, and let n be a natural number. Then there exists a natural number $m_{2}=m_{2}(g, n)$ such that for all $p \geqslant m \geqslant m_{2}$ we have $D_{p}^{1 / m} \subset B(K ; 1 / n)$. Thus $\lim _{e \rightarrow 0, m \rightarrow \infty} D_{m}^{e}=K$ in the Hausdorff metric.

Proof. g is a k-set contraction of C for some $k<1$. Let $\gamma(C)=c$. Then $\gamma(g(C)) \leqslant k \gamma(C)=k c$, and so $\gamma(\operatorname{co}(B(g(C) ; 1 / m)) \leqslant k c+2 / m$, by Lemma 1, that is $\gamma\left(D_{1}^{1 / m}\right) \leqslant k c+2 / m$. It is easily established by induction on p that (1) $\gamma\left(D_{p}^{1 / m}\right) \leqslant k^{p} c+(2 / m)(1 /(1-k)), p=1,2, \ldots$ Let $D=$ $D(g)=\cap_{m=1}^{\infty} D_{m}^{1 / m}$. We note that $D_{m}^{1 / m}$ is a decreasing sequence of closed, convex, nonempty subsets of C, and by (1),

$$
\gamma\left(D_{m}^{1 / m}\right)=k^{m} c+(2 / m)(1 /(1-k)) \rightarrow 0 \quad \text { as } m \rightarrow \infty .
$$

By Lemma $1(\mathrm{~d}), D$ is a nonempty, compact, convex set and $\lim _{m \rightarrow \infty} D_{m}^{1 / m}=$ D in the Hausdorff metric. D also contains K since $D_{m}^{1 / m} \supset D_{m}^{0} \supset K$, $m=1,2, \ldots$. Thus it will suffice to show that $D=K$ and then apply Lemma 2(b) in order to obtain Lemma 3.

Since $D_{m}^{1 / m}$ is invariant under g for each m, it follows that D is invariant under g. Since D is also compact and convex, we have $D \supset \operatorname{co(g(D))}$. Let $\varepsilon>0$ be given. Since g is continuous and D is compact, there exists $\eta=\eta(\varepsilon)$ >0 such that for any $x, y \in B(D ; \eta)$ with $\|x-y\| \leqslant \eta$, we have $\|g x-g y\|$ $\leqslant \varepsilon / 2$. Then $g(B(D ; \eta)) \subset B(g(D) ; \varepsilon / 2)$, and since $D_{m}^{1 / m} \subset B(D ; \eta)$ for m sufficiently large, we have $g\left(D_{m}^{1 / m}\right) \subset B(g(D) ; \varepsilon / 2)$ and so

$$
\begin{aligned}
D_{m+1}^{1 / m+1} & \subset D_{m+1}^{1 / m}=\operatorname{co} \overline{\left(B\left(g\left(D_{m}^{1 / m}\right) ; 1 / m\right)\right)} \\
& \subset \operatorname{co} \overline{(B(g(D) ; \varepsilon / 2+1 / m))} \subset \operatorname{co}(\overline{B(g(D) ; \varepsilon)})
\end{aligned}
$$

for m sufficiently large.Thus $D=\cap_{m=1}^{\infty} D_{m}^{1 / m} \subset \operatorname{co}(\overline{B(g(D) ; \varepsilon)})$. Since this holds for arbitrary $\varepsilon>0$ and since $\left.\cap_{\varepsilon>0} \cos (\overline{B(g(D)} ; \varepsilon)\right)=\operatorname{co}(\overline{g(D)})$, we find that $D \subset \cos (\overline{g(D)}) \subset D$, and so $D=\operatorname{co}(\overline{g(D)})$. We have $D \subset C$ and therefore $D=\operatorname{co}(\overline{g(D)}) \subset \operatorname{co}(\overline{g(C)})=D_{1}^{0}$ and inductively we find $D \subset$ $D_{m}^{0}, m=0,1,2, \ldots$ Thus we have $D \subset \cap_{m=0}^{\infty} D_{m}^{0}=K \subset D$, and so $D=$ K. The lemma now follows.

Lemma 4. Let $g \in \mathcal{C}$. Let $K=K(g), m_{2}=m_{2}(g ; n), n=1,2, \ldots$, be as in Lemma 3. Then if $h \in \mathcal{C}$ with $d(h, g)<1 / m_{2}$, we have $K(h) \subset$ $B(K(g) ; 1 / n)$.

Proof. For all $x \in C$, we have $\|h x-g x\|<1 / m_{2}$. Therefore $h(C) \subset$ $B\left(g(C) ; 1 / m_{2}\right)$, and so

$$
D_{1}^{0}(h)=\operatorname{co}(\overline{h(C)}) \subset \operatorname{co}\left(\overline{B\left(g(C) ; 1 / m_{2}\right)}\right)=D_{1}^{1 / m_{2}}(g)
$$

Similarly, we have $h\left(D_{1}^{0}(h)\right) \subset B\left(D_{1}^{1 / m_{2}}(g) ; 1 / m_{2}\right)$, and we inductively obtain $D_{m}^{0}(h) \subset D_{m}^{1 / m_{2}}(g), m=1,2, \ldots$ Thus for $m \geqslant m_{2}$, we have

$$
D_{m}^{0}(h) \subset D_{m}^{1 / m_{2}}(g) \subset B(K(g) ; 1 / n)
$$

and so $K(h) \subset B(K(g) ; 1 / n)$.

Before proceeding to the proof of the theorem, we note the trivial
Lemma 5. © is dense in \Re.
Proof. W.l.o.g. $O \in C$. Then for any $f \in \mathscr{\Re}, \varepsilon>0, g=(1-\varepsilon / 2) f$ is a ($1-\varepsilon / 2$)-set contraction of C and $d(f, g)<\varepsilon$.
3. Proof of the theorem. We modify the arguments used in [2], [8]. For each $g \in \mathcal{C}$ and each natural number n, let $K(g), m_{2}=m_{2}(g, n)$ be as in Lemma 4. Define $U_{n}(g)$ to be $\left\{f \in \mathscr{R}: d(f, g)<2^{-n} m_{2}^{-1}\right\}$ and define \Re_{0} to be $\cap_{n=1}^{\infty} \cup_{g \in e} U_{n}(g)$. By Lemma $5, \Re_{0}$ is a dense G_{δ} subset of \mathcal{N} and to prove the theorem it remains to show that $\mathscr{N}_{0} \subset \mathscr{F}(\Re)$.

Let $f \in \mathscr{N}_{0}$, and let $g_{n} \in \mathcal{C}$ be such that $f \in U_{n}\left(g_{n}\right), n=1,2, \ldots$ Define n_{1} to be 1 and choose $n_{2} \geqslant 2$ so large that $2^{-n_{2}}\left(m_{2}\left(g_{n_{2}}, n_{2}\right)\right)^{-1}<$ $2^{-1}\left(m_{2}\left(g_{1}, 1\right)\right)^{-1}$. Then $d\left(g_{1}, g_{n_{2}}\right) \leqslant d\left(g_{1}, f\right)+d\left(f, g_{n_{2}}\right)<\left(m_{2}\left(g_{1}, 1\right)\right)^{-1}$. It follows from Lemma 4 that $K_{2} \subset B\left(K_{1} ; 1\right)$ where $K_{1}=K\left(g_{1}\right), K_{2}=K\left(g_{n_{2}}\right)$. Inductively, if n_{1}, \ldots, n_{j} have been chosen, choose $n_{j+1} \geqslant 2 n_{j}$ sufficiently large that

$$
2^{-n_{j+1}}\left(m_{2}\left(g_{n_{j+1}}, n_{j+1}\right)\right)^{-1}<2^{-n_{j}}\left(m_{2}\left(g_{n_{j}}, n_{j}\right)\right)^{-1}
$$

We find that

$$
d\left(g_{n}, g_{n_{j+1}}\right)<2^{1-n_{j}}\left(m_{2}\left(g_{n_{j}}, n_{j}\right)\right)^{-1}<\left(m_{2}\left(g_{n_{j}}, n_{j}\right)\right)^{-1}
$$

and so $K_{j+1} \subset B\left(K_{j} ; 1 / n_{j}\right)$, where $K_{i}=K\left(g_{n_{i}}\right), i=1,2, \ldots, j+1$. Let $r_{j}=$ $\sum_{i=j}^{\infty} 1 / n_{i}$. Then $r_{j} \leqslant \sum_{i=j}^{\infty} 2^{1-i}<\infty, j=1,2, \ldots$. We note that $B\left(K_{j+1} ; r_{j+1}\right)$ $\subset B\left(K_{j} ; r_{j}\right), j=1,2, \ldots$ Choose $x_{j} \in K_{j}$ such that $g_{n_{j}} x_{j}=x_{j}$, and let
 closed subsets of C, and $S_{j} \subset B\left(K_{j} ; r_{j}\right), j=1,2, \ldots$ Therefore $\gamma\left(S_{j}\right) \leqslant 2 r_{j}$ $\rightarrow 0$ as $j \rightarrow \infty$, and hence from Lemma $1(\mathrm{~d})$, there exists a point $x_{0} \in$ $\bigcap_{j=1}^{\infty} S_{j}$, and so there is a subsequence which we again label x_{j} such that $\lim _{j \rightarrow \infty} x_{j}=x_{0}$. Thus $\lim _{j \rightarrow \infty} f x_{j}=f x_{0}$. On the other hand,

$$
\begin{aligned}
\left\|f x_{j}-x_{j}\right\| & \leqslant\left\|g_{n_{j}} x_{j}-x_{j}\right\|+\left\|f x_{j}-g_{n_{j}} x_{j}\right\| \\
& <2^{-n_{j}}\left(m_{2}\left(g_{n_{j}}, n_{j}\right)\right)^{-1} \rightarrow 0 \text { as } \quad j \rightarrow \infty .
\end{aligned}
$$

It follows that $f x_{0}=x_{0}$, and so $f \in \mathscr{F}(\Re)$. The proof of the theorem is complete.

References

1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
2. F. S. De Blasi and J. Myjak, Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Bánach, C. R. Acad. Sci. Paris Sér. A 283 (1976), 185-187.
3. G. Darbo, Punti uniti in transformazione a condiminio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
4. D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1966), 251-258.
5. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004-1006.
6. C. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
7. R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89 (1971), 217-258.
8. G. Vidossich, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), 17-29.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2Gl

