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ARTINIAN SKEW GROUP RINGS1

JAE KEOL PARK

Abstract. Let R be a ring with identity and let 0 be a group

homomorphism from a group G to Aut(J?), the group of automorphisms of

R. We prove that skew group ring R * 9 G is right Artinian (resp.,

semiprimary, right perfect) if and only if R is right Artinian (resp.,

semiprimary, right perfect) and the group G is finite. Also semilocal skew

group rings over fields are characterized.

1. Introduction. In [2] I. G. Connell has shown that the ordinary group ring

R[G] is right Artinian if and only if R is right Artinian and G is finite.

Moreover, G. Renault [11] and S. M. Woods [12] have shown that the group

ring R [G] is right perfect if and only if R is right perfect and G is finite.

In general, this type of result is not true for crossed products. D. S.

Passman [10, Proposition 4.2] has constructed an Artinian twisted group ring

with an infinite group.

Joe W. Fisher has raised the question in the case of skew group rings, i.e.,

crossed products with trivial factor sets. The usual group ring techniques fail

for skew group rings; however, in spite of this, we have still been able to show

that the answer to his question is affirmative, i.e., a skew group ring is right

Artinian (resp., semiprimary, right perfect) if and only if the coefficient ring is

right Artinian (resp., semiprimary, right perfect) and the group is finite. In

order to show that this kind of result does not extend beyond the perfect case,

we give an example of a skew group ring which is semiperfect but the group is

not finite. Also, in this paper, semilocal skew group rings over fields will be

characterized.

2. Preliminaries. In this section some necessary definitions and lemmas will

be introduced. Throughout this paper, R denotes a ring with identity and G

denotes a group.

Let S be a group homomorphism from G to Aut(/?), the group of

automorphisms of the ring R. The skew group ring R * 9 G is defined as in [5]

to  be  R * g G = © Sg6C Rg  with  addition  given  componentwise  and
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2 J. K. PARK

multiplication given as follows: if r,s E R and g,h E G, then (rg)(sh) =

rse(g)gh, where i8(s) is the image of s under 9(g).

The ring R is called right perfect [1] if R is semilocal (i.e. R/J(R) is

Artinian) and the Jacobson radical J(R) is right T-nilpotent, or equivalently,

R satisfies the descending chain condition on principal left ideals [1, Theorem

28.4, p. 315]. The ring R is called semiprimary [1] if R is semilocal and J(R) is

nilpotent. Finally R is called semiperfect [1] if R is semilocal and every

idempotent in R/J(R) can be lifted to one in R.

We begin with the following well-known result.

Proposition 2.1. Let S be a ring with identity and R be a subring of S with

the same identity. If R is a left (resp., right) R-direct summand of S, then for

any right (resp., left) ideal I of R, IS n R = I (resp., SI n R = I).

Proof. Straightforward.

The usual group ring technique of obtaining R as a homomorphic image of

R * g G via the augmentation map fails because of the skewing of the

coefficients. The following lemmas overcome this difficulty.

Lemma 2.2. If the skew group ring R * 9 G is right Artinian (resp., right

Noetherian, right perfect), then so is R * 9 H for any subgroup H of G. In

particular, R is right Artinian (resp., right Noetherian, right perfect).

Proof. Evident from Proposition 2.1.

Lemma 2.3. Let R be a ring with identity and 9 be a group homomorphism

from G to Aut(R). And let B be a subring of R with the same identity such that

B is invariant under the action of 9(G). If B is a left (resp., right) B-direct

summand of R, then, for any right (resp., left) ideal I of B * a G, I(R * e G) n

B * 0 G = I (resp., (R * 9 G)I C\ B * a G = I), where o is the group

homomorphism from G to Aut(5) induced by 0.

Proof. Let B be a left Ä-direct summand of R such that BR = BB © BC

and let G = {e, g, h, . . . }. Then R * 8 G = B * a G © (eC © gC © hC

© . . . ) and eC © gC © hC © .. . is a left B * „ G-module. Therefore

B * a G is a left B * a G-module direct summand of R * 9G. Hence, for any

right ideal I of B * a G, I(R * 9 G) n B * a G = Iby Proposition 2.1.

Similarly for any left ideal / of B * „ G, (R * 9 G)I n B * a G = / if B is a

right 5-direct summand of R.

3. Main results. In this section, we establish our main theorems. We will

start with the Artinian result. In order to do this, we will first consider a right

Artinian skew group ring whose coefficient ring is primitive. Secondly, we

allow the coefficient ring to be semiprimitive and, finally, we are able to

handle the general case.
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Proposition 3.1. Let R be a primitive ring and let 9 be a group

homomorphism from a group G to Aut(R). If R * e G is right Artinian, then G

is finite.

Proof. Since R * 9 G is right Artinian and R is primitive, R is a simple

Artinian ring by Lemma 2.2. Thus the center F of R is a field. And since F is

invariant under the action of 9(G), F * a G is right Artinian by Lemma 2.3,

where a is the group homomorphism from G to Aut(F) induced by 9. Now let

Fa(G) be the fixed subfield of F under the action of o(G), that is, F°iG) = {a

E F: aa(g) = a for all g in G). Then by Lemma 2.3, we obtain that

f°(G) * ̂  (j = f(G)[G] (the ordinary group ring) is right Artinian, where s is

the group homomorphism from G to Aut(Fo(G)) induced by o. Hence by

Connell's result [2, Theorem 1], we get that G is finite.

Lemma 3.2. Let R be a semiprimitive ring and 9 be a group homomorphism

from a group G to Aut(R). If R * 9 G is right Artinian, then G is finite.

Proof. Since R * 9 G is right Artinian, R is right Artinian by Lemma 2.2,

and therefore R is semiprimitive Artinian. Now let R = Rx © R2 © • • • ©

R„ be the decomposition into simple components and let H = Ker 9. Then,

since R * 9 G is right Artinian, R * 9 H = R [H] (the ordinary group ring) is

right Artinian by Lemma 2.2. Hence H is finite by Connell's result [2,

Theorem 1].

Now to prove that G is finite, it will suffice to show that 9(G) is finite

because G/H s 9(G) E Aut(Ä). Then since 9(G) acts on R = Rx © R2

©•••©/?„, 9(G) permutes these factors Rr Thus if Hx = {9(g) E 9(G):

Rx(g) = /?,), then we see that [9(G):HX] < n. Furthermore, by Lemmas 2.2

and 2.3, Rx * Hx is right Artinian. It follows from Lemma 3.1 that Hx is finite.

Hence 9(G) is finite. Therefore G is finite.

Now we are in a position to prove one of our main results.

Theorem 3.3. Let R be a ring and 9 be a group homomorphism from a group

G to Aut(Ä). Then R * 9 G is right Artinian if and only if R is right Artinian

and the group G is finite.

Proof. The sufficiency is evident. For the necessity, suppose that R * 9 G

is right Artinian. Then by Lemma 2.2, R is right Artinian. Let J(R) denote

the Jacobson radical of R. Then 9 induces a group homomorphism o from G

to Aut(R/J(R)) because the Jacobson radical J(R) is obviously invariant

under the action of 9(G). In this case R/J(R) * a G is a ring epimorphic

image of the right Artinian ring R * 9 G. Therefore R/J(R) * „ G is right

Artinian and the coefficient ring R/J(R) is semiprimitive Artinian. Thus G is

finite by Lemma 3.2.

In order to generalize the above theorem to the semiprimary case and

perfect case, we start with the following.
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Lemma 3.4. Let R be a ring and 9 be a group homomorphism from a group G

to Aut(R), and let I be a G-invariant ideal of R.

(1) If I is nilpotent, then I * a G is nilpotent.

(2) If I is right T-nilpotent, then I * a G is right T-nilpotent, where o is the

group homomorphism from G to Aut(7) induced by 9.

Proof. (1) Obvious.

(2) Suppose I * a G is not right T-nilpotent. Then there is a sequence

{ctk)™=x in I * a G such that an • • • a2ax ¥= 0 for every positive integer n.

Therefore for every positive integer n, there are elements axklX),

aiM2» • ■ •, anMn) in / such that a„Mn) ■ ■ ■ a2M2)aXMX) ¥= 0. Since there is a

path of arbitrary length, by Koenig Graph Theorem we conclude that there

exists an infinite path: i.e., there exists a sequence aXk^X), o2k^2y ... in / such

that, for all positive integer n, ank^n) • • • ct2k^aXk^ ¥= 0. This contradicts

the right 7-nilpotency of /.

Lemma 3.5. Let R be a ring and 9 be a group homomorphism from a finite

group G to Aut(R). Then J(R) = R n J(R * 9 G).

Proof. That R n J(R * 9 G) E J(R) follows easily from the definition of

the radical. But since G is a normalizing basis of R * 9 G over R, we have that

J(R) E J(R * 9 G) by [9, Theorem 7.2.5, p. 276].

Remark 3.6. Let Äbea ring and 9 be a group homomorphism from a finite

group G to Aut(Ä). Then by Lemma 3.5, R * 9 G/J(R * 9 G) is a ring

epimorphic image of R * 9 G/J(R) * G via the naturally defined ring

epimorphism.

Now let us consider the perfect skew group ring case.

Theorem 3.7. Let R be a ring and 0 be a group homomorphism from a group

G to Aut(R). Then R * 9 G is right perfect if and only if R is right perfect and

the group G is finite.

Proof. For the necessity, suppose R * 9 G is right perfect. Then R is right

perfect by Lemma 2.2. We note that the technique of the proof for the

necessity of Theorem 3.3 can be applied to the perfect skew group ring case

by using Lemmas 2.2 and 2.3 in order to reduce the problem down to a right

perfect group ring over a field. Then G. Renault's result [11, Theorem 3] or S.

M. Woods' result [12] can be applied in order to obtain that G is finite.

For the sufficiency, suppose that R is right perfect and G is finite. Since R

is right perfect, R/J(R) is Artinian and therefore R/J(R) * a R is Artinian

by Theorem 3.3, where a is the group homomorphism from G to

Aut(R/J(R)) induced by 9. Therefore R * 9 G/J(R * 9 G) is right Artinian

by Remark 3.6. Let m be the canonical homomorphism from R * 9 G to

R * 9 G/J(R) *    G. Then we have that
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tt(J(R * , G )) = J(R * , G )/J(R ) * p G

EJ(R*9G/J(R)*pG)

and J(R * „ G/J(R) * p G) is isomorphic to J(R/J(R) * a G). Hence

J(R * 9 G)/J(R) * p G is nilpotent, since it is embedded in J(R/J(R) * „ G)

which is nilpotent. Moreover since J(R) is right T-nilpotent, J(R) * p G is

right T-nilpotent by Lemma 3.4. Therefore J(R * 9 G) is right T-nilpotent.

Hence R * 9 G is right perfect and the proof is complete.

Finally we consider the semiprimary skew group ring case.

Theorem 3.8. Let R be a ring and 9 be a group homomorphism from a group

G to Aut(R). Then R * 9 G is semiprimary if and only if R is semiprimary and

the group G is finite.

Proof. For the necessity, suppose that R * 9 G is semiprimary. Then

R * g G is right perfect and therefore G is finite by Theorem 3.7. Since

R * 9 G is right perfect, R is right perfect by Lemma 2.2 and therefore

R/J(R) is Artinian. Now since G is finite, we have that J(R) = R n

J(R * 9 G) by Lemma 3.5. In this case J(R * 9 G) is nilpotent because

R * 9 G is semiprimary, wherefore J(R) is also nilpotent. Hence R is

semiprimary.

For the sufficiency, suppose that R is semiprimary and G is finite. Then

again R * 9 G/J(R * 9 G) is right Artinian and J(R* 9 G)/J(R) * p G is

nilpotent as in Theorem 3.8. Since J(R) is nilpotent, J(R) * p G is nilpotent

by Lemma 3.4. Thus J(R * e G) is nilpotent and hence R * 9 G is

semiprimary. The proof is then complete.

4. Semilocal skew group rings. In this section, we will show via an example

that the result which we have proved in §3 cannot be generalized beyond the

perfect case. Also we will characterize those skew group rings over a field

which are semilocal.

Example 4.1. Let K be an infinite field with characteristic p > 0 and let

R = Mat2(A"). For each a in K, define ga: R -> R such that ga(A) =

(o ")-4(o ~") f°r -^ m ^- Then ga is a ring automorphism of order p. Now let

G = {ga: a in K). Then G is locally finite abelian /»-group and the skew

group ring R * G as R[G], the ordinary group ring, via the map which sends

Aga to A(o "x)ga. By [4, Theorem 8], A^[G] is semiperfect. In [7, Theorem 3] it

was shown that a ring is semiperfect if and only if the n X n matrices over the

ring is semiperfect for every positive integer n. Hence R[G] — Mat2(A")[G] =

Mat2(A'[G]) is semiperfect but G is infinite. This example shows us that the

semiperfectness or the semilocalness of skew group ring does not imply the

finiteness of group when the group G acts faithfully on the ring R.

Proposition 4.2. Let R be a semilocal ring and be a group homomorphism

from a finite group G to Aut(Ä). Then R * 9 G is semilocal.
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Proof. Since G is finite, R * 9 G/J(R * 9 G) is a ring epimorphic image of

right Artinian ring R/J(R) * a G by Remark 3.6. Therefore R * 9G is

semilocal.

Lemma 4.3 (Fisher and Montgomery [3, Corollary 3]). If R is

semiprimitive and G C Aut(i?) is %-outer, then R * G is semiprimitive.

From this result we obtain the following.

Proposition 4.4. Let R be a semiprimitive ring and G CAut(Ä) be St-

outer. If R * G is semilocal, then G is finite.

Proof. Evident from Theorem 3.3 and Lemma 4.3.

Example 4.1 shows that Proposition 4.4 cannot be established if G is not

^-outer.

The following result is an analog of the result [8] for ordinary group ring

which states that if K is a field with characteristic 0 and a group ring K[G] is

semilocal, then G is finite. However, it is not necessary to assume the

characteristic of the coefficient field is zero in the skew group ring case if we

assume G acts faithfully on K.

Proposition 4.5. Let K be a field and G E Aut(Ä). Then the following are

equivalent.

(1) K * G is semiperfect.

(2) K * G is semilocal.

(3) G is finite and K * G = Matn(KG), where KG is the fixed field under the

action of G and n is the order of G.

Proof. That (1) => (2) and (3) => (1) are evident.

(2) => (3). By Proposition 4.4, G is finite. Now let n be the order of G. Then

by [6, Lemma 4.4.2, p. 111], we have that K * G » Matn(KG).
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