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SIMPLE NEAR-RING CENTRALIZERS OF FINITE RINGS

CARLTON J. MAXSON AND KIRBY C. SMITH

Abstract. For a finite ring R with identity and a finite unital Ä-module V

we call C(R) = {/: K-> V\f(av) = af(v) for all a 6 R, v e V) the near-
ring centralizer of R. We investigate the structure of C(R) and obtain a

characterization of those rings R for which C(R) is a simple nonring.

1. Introduction. Let H be a commutative ring with 1 and let V be a finitely

generated //"-module with S = \lndH(V). If H is a field and if R is a simple

subring of S containing H then it is well known that the centralizer of R in S,

CS(R), is a simple ring. However if CS(R) is simple it is easy to see that R

need not be simple. As far as the authors know, a characterization of the

subrings R of S such that CS(R) is simple is an unsolved problem. In this

paper we consider a nonlinear analogue. In particular let S denote the

near-ring S = Mapw(F) = (/: V-* V\f(av) = af(v) for all a E H, v E

V). Let R be a subring of S of //-endomorphisms of V and assume R

contains H. The set C(R) = {/ £ S\f(rv) = rf(v) for all r E R, v E V) is a

near-ring, called the near-ring centralizer of R in 5. It is the goal of this paper

to consider the following problems in the case where H is a finite commuta-

tive ring with 1 : If R is a simple ring is C(R) a simple near-ring? If C(R) is a

simple near-ring what can be said about Rl Which simple nonrings (near-

rings that are not rings) have the form C(R) for some subring R of SI

The above questions arise naturally from a different point of view. It has

been shown by Betsch [1] that if Af is a finite simple near-ring which is not a

ring then there exists a finite group G and a fixed point free group of

automorphisms T of G such that N ss Cr(G) = {/: G -* G|/(ya) = yf(a) for

all y E T, a E G). As long as G is a group and T is a semigroup of

endomorphisms of G then CT(G) forms a near-ring. The structure of C^G)

for various G's and T's has been investigated in [4], [5] and [6]. In this paper

we study the structure of Cr(G) when T is a finite ring with 1 and G is a

unitary T-module. In this setting we investigate the problems mentioned

above.

2. Simple centralizers. For the rest of this paper R will denote a finite ring

with 1 and V a finite unital Ä-module. The near-ring centralizer of R is

C(R) = {/: K-> V\f(rv) = rf(v) for all r E R, v E V).

Presented to the Society, January 27, 1979; received by the editors June 26, 1978 and, in

revised form, September 15, 1978.

AMS (MOS) subject classifications (1970). Primary 16A76, 16A44; Secondary 16A42, 16A48.
Key words and phrases. Centralizers, simple rings, near-rings.

© 1979 American Mathematical Society

0002-9939/79/0000-0251/S02.25

8



SIMPLE NEAR-RING CENTRALIZERS OF FINITE RINGS 9

Theorem 1. Let R be a finite simple ring and let V be a finite unital

R-module. Then C(R) is a simple near-ring. Moreover C(R) is a nonring if

and only if R is a field and dimÄ V > 1.

Proof. Let {e0) be a set of matrix units for R where 1 = exx + • • • + e,„

the e¡¡ primitive idempotents. The /?-module V forms a vector space over the

center F of R. We have V = Vx © • • • © V, where V¡ = e¡¡ V, a vector space

direct sum. For/ G C(R), v¡ E V¡ we have/(ü, + • ■ • + vt) = v'x + ■ ■ ■ +

v¡ for some v[ E V¡. Since e¡J = /<?,, we have/(u,) = v[ and so/(u, + • • • +

v,)=f(vx)+ ■ ■ ■ +f(v,).
If / = 1 then R is a field and C(R) is well known to be simple [1]. Also

C(R) is a nonring when dimÄ V > 1. (For if v ¥= 0 E V define/: V-* V by

f(av) = av, a E R, and f(x) = 0 otherwise. Then f E C(R) and / is not

linear.)

Assume now that t > 1. To show/ E C(R) is a linear transformation on V

it suffices to show/is linear on each V¡. Without loss of generality we choose

/=1. For vx E Vx, v2 E V2 we have

(1 + eX2)f(vx + v2) = (1 + eX2)(f(vx)+f(v2))

= K^) + f(v2) + f(eX2v2),

and

/(0 + en)(vi + v2)) =f(vx + v2 + ex2v2)

= f(vx + ex2v2) + f(v2).

Hence/(o, + ex2v2) = f(vx) + f(eX2v2). Since ex2V2 = Vx, f is linear on Vx.

Thus C (R ) is a ring and is simple by the double centralizer theorem for rings

[3, p. 132].

Corollary. Assume R is a finite semisimple ring and V is a finite unital

R-module. If none of the simple summands of R is a field then C(R) is a ring.

Assume now that C(R) is a simple near-ring. From the Betsch character-

ization of simple near-rings [1] it is easy to see that the nonzero elements of

the center of C(R) are invertible. Since the center of R is contained in the

center of C(R), the center of R is a field F. Hence R is an algebra over F, V

is a vector space over F, and R may be viewed as a ring of linear transfor-

mations acting on V.

The Wedderburn principal theorem is valid for R [7, p. 164], that is

R = S + N, a vector space direct sum, where N is the radical of R and S is

semisimple with R/N s S.

If TV = (0) then R must be simple since its center is a field, and Theorem 1

applies. Hence we may assume N ¥= (0). In the following sequence of lemmas

we show that if R is not a field then C(R) is a ring.

Lemma I. If C(R) is simple with R = S + N, N ¥= (0), then S is not a

simple ring.
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Proof. Suppose Nk = (0) with Nk~x ^ (0). Let Wx = ker Nk~x = {v E

V\nv = 0 for ail n E Nk~x}, a proper subspace of V and an S-submodule of

V. As an S-module V is completely reducible so V = Wx® W2, an S-module

direct sum. Select w2 ̂  0 in W2; then Sw2 is a direct summand of W2 and

V = Wx © Sw2 © W2. The S-annihilator of w2, ann(w2), is a left ideal of S so

5 = ann(w2) © Se as left ideals, where ê is an idempotent. If eNk~x ¥= (0)

then there exists a n0 E Nk~x such that èn0 ¥= 0. Select v E V with en0(v) ¥=

0. Every element of V can be uniquely written in the form wx + sw2 + w2.

where wx E Wx, s E Se and »v2 E W2. Define/: K—» V by/(w, + sw2 + w^

= se~n0(v). The function / is nonzero since f(êw2) = e~n0(v) =£ 0, and since

nW2 E Wx for all n E N we have / E C(R). Also the set I = {g E

C(R)\g(rVx) = {0}} is an ideal of C(R) containing/, which is a contra-

diction to the simplicity of C(R), so eNk~x = (0). Thus the 5-annihilator of

N k~ ' is a proper ideal of S.

Lemma 2. Assume C(R) is simple and not a ring. Then S is a direct sum of

fields.

Proof. We have R = S + N where S = Sx © S2 © • • • © St, S¡ Simple

and t > 1. Suppose Sx is not a field. Let e, be the identity for S¡. We have

V = exV © • • • © e,V where each e¡V is C(Ä)-invariant. Since the simple

ring Sx acts on exV the map 4>: C(R)-^> C(SX) given by/-»/, where/is/

restricted to e, V, is an imbedding. Since C(SX) is a ring, so is C(Ä). Thus S

must be a direct sum of fields.

Lemma 3. Suppose C(R) is simple and that in R, 1 = ex + e2 where ex and

e2 are orthogonal idempotents that belong to the center of S. Let V = Wx® W2

where W¡ = e¡ V. Assume there exists a positive integer I such that ker Nl E Wx

and ker Nl+X c\W2J= (0). Then C(R) is a ring.

Proof. Let K = ker N,+ x n W2, an 5-submodule of V which is C(R)-

invariant. The subspace (N'K) of V is also an S-submodule, and (N'K} Q

ker N E ker N^_ E Wx. As 5-modules wehave V = Wx © (N'K) ® K ® W2

where Wx = Wx © <#'*:>, W2 = # © IT2.

We show now that if / £ C(R) then / is linear on <#'#> © K. For

vx,v2 E K, nx,n2 E N' we have n¡v¡ E (NlK}. Also (1 + nx)f(vx + n^-f) =

/((l + nx)(vx + n2v2)) which implies that f(nxvx + n^^ = f(nxvx) + f(n2v2).

For « E N1, vx,v2 E K we have, from above, that n(f(vx + v^ - f(vx) -

f(v2)) = 0. This means/(o, + v2) - f(vx) - f(vj E ker N' nW2 = (0) and

so /is linear on AT.

For n, E N',v¡ E K,i = 1, 2, 3, we have

(1 + nx)f(vx + /i2ü2 + «3ü3) =/((l + nx)(vx + n2v2 + n3v3)),

so

f(nxvx + n2v2 + /I3Ü3) - f(nxvx) + f(n2v2) + f(n3v3).
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Continuing we get / is linear on (N'K), and hence linear on (N'K) © K.

Moreover since K is C(Ä)-invariant so is (NlK) and hence (N'K) © A" is

both C(R) and 5-invariant. Let

C(S; (N'K) ®K) = {f: (NlK) ®K^ (NlK) © K\f(av) = 0/(0),

a E S, v E (N'K)® K}.

The map given by /-»/, where f is f restricted to (N'K) © K, is an

imbedding of C(R) into C(S; (N'K) © K). Since the range of this imbed-

ding is a ring, C(R) is also a ring.

Theorem 2. Suppose R is a finite ring with I, not a field, and V is a finite

unital R-module. If C(R) is simple then it is a ring.

Proof. From Lemmas 1 and 2 we have R = S + N where S is a direct

sum of at least two fields and Nk = (0), Nk~x ¥= (0). So S = &,©••• ©

Se, where each e¡ is a primitive idempotent, and V = Wx ffi • • • © W, where

W¡ = e,V.

As 5-modules we have V = ker TV*-1 © W. If w ¥- 0 E W then w =_wx

+ • • ■ + wt, w, E W¡, and we may assume w, ¥= 0. Then e,w = w, E W n

Wt. We show now that ker N c\Wt = (0). Assume k ¥=0 belongs to ker TV n

Wt. As ^-modules

F = Wx © W2 © • • • ffi Wt_x ffi Sw, ffi ÎÏ7,

where 5 = Se, and IT, = Sw, ffi wF,. Define/: V^ F by

/(w, + w>2 + • • • + w,_x + sw, + w,) = sk.

Since «K ç ker Nk~ ' for all « e iV and since Sw, n ker TV*-' = (0), we have

f E C(R). Alsof¥= 0 since/(w,) = e,k = k ¥= 0. Moreover /(ker Nk'x) =

(0) and this contradicts the simplicity of C(R). Hence ker TV n W, — (0).

We now have ker N E Wx ffi W2 ffi • • ■ ffi IP,., with ker N n W, = (0).

Let / > 1 be such that ker N' E Wx ffi • • • ffi W,_x but ker Nl+X g Wx

ffi • • • ffi W,_x. Then there exists a « E ker 7V/+1 with v = wx + ■ ■ ■ +

w,_ 1 + w, and w, ¥= 0. This means e,v = w, is a nonzero element in ker 7V/+1

n W,. By Lemma 3, C(R) is a ring.

Under the conditions of the above theorem, the simple near-ring C(R) is a

simple ring which clearly contains End^K), the ring of Ä-endomorphisms of

V. We now show that C(R) is in fact equal to the ring EndÄ(F). This is

established by showing that the near-ring module V is indeed a ring module

over C(R).

Theorem 3. Suppose R is a finite ring with I, not a field, and V is a finite

unital R-module. If C(R) is simple then C(R) = EndÄ(K), the ring of R-

endomorphisms of V.

Proof. From Theorem 2 C(R) is a ring. We need to show C(R) =

End^F). Clearly F is a near-ring module over the simple ring C(R). Since
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C(R) is a ring it is a distributively generated near-ring, so submodules of V

and C (R )-subgroups of V coincide [8, p. 174]. We have C(R) = Ax

© • • • © A, where the A¡ are minimal left ideals of C(R). For v E V either

At■ = AjV or A¡v = (0). Hence V = Hvey 2,A¡v, a sum of irreducible

submodules of V. But then F is a direct sum of irreducible submodules

V = Vx © • • • © Vs. Since each V¡ is a cyclic submodule of V it is clear that

/ E C(R) is additive on each V¡. Using the definition of a near-ring module

it is easy to see that/ E C(R) is additive on all of V. Thus F is a ring module

and C(R) is the complete ring of Ä-endomorphisms of V as desired.
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