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THE JACOBSON RADICAL OF THE GROUP ALGEBRA OF A

FINITE GROUP

SURINDER SINGH BEDI1

Abstract. Let K be a field of characteristic/) ^ 0 and G a finite group such

that/? | o(G). Suppose G is a Frobenius group with a Sylow/»-subgroup P as

a complement. Then we have proved that

JK(G)= H   JK(PX)K(G).

We have given an example to show that equality does not hold in general.

0. Introduction. Let G be a finite group and K a field of characteristic

p ¥= 0. If p j o(G) then JK(G) = 0 and if p\o(G) then JK(G) ¥= 0 [2, Theo-

rem 1.4.1]. If G is a/7-group then [2, Theorem 2.3.2] JK(G) = w(K(G)), the

augmentation ideal of K(G). More generally [5, Theorem 16.6], if G is a

group having unique Sylow /i-subgroup P, then

JK(G) = w(K(P))K(G).

So one asks the following question:

Is JK(G) = D JK(P)K(G) where P ranges over Sylow/i-subgroups of G?

We prove (Theorem 1 and Corollary 1) this to be the case for a group G

having a normal subgroup G0 such that p\(G : G0) and that G0 is a

Frobenius group having a Sylow /»-subgroup P as its complement subgroup.

An example due to Passman shows that this equality is false in general.

1. Definitions and preliminaries. A finite group G is said to be a Frobenius

group with complement H if H is a subgroup of G such that (1)

{<?} C H c G and (2) xHx~x n H = (e) for every x E G - H. A finite

group G is a Frobenius group iff G is isomorphic to a transitive permutation

group such that subgroup fixing any of the letters is nontrivial and each

permutation ¥= e fixes at most one letter [1, Chapter 2, p. 37], [4, p. 57]. The

most important fact regarding these groups is the following:

N = {xE G\C(x) n H =0} U {e)

= (g- H   xHx~l)\j {e}
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is a normal subgroup of order (G : H) and G = NH [1, Theorem 7.5]. The

subgroup N is called the Frobenius kernel of G. If H = P, Sylow /»-subgroup

of G then p \ o(N) because o(N) = (G : P). The number of distinct Sylow

/»-subgroups of G equals o(N).

We say x E G is a /»-element provided o(x) = p' for some i > 0. The

/»-trace of "2axx E K(G) is defined to be

tTp(2axx) =        2 ax.
x is a/»-element

Lemma 1. If a E K(G) is nilpotent then trp(a) = 0.

For proof see [6, Lemma 2.3.3].

Lemma 2. Suppose N and H are subgroups of the finite group G with N <] G

and G = AT/. If Ñ = 2„eA, n, then

JK(H)Ñ E ( Pi  JK(HX)K(G)\ n JK(G).

Proof. Observe that N is central in K(G) and nN = N for all n E N. Let

x E G = NH so x = nh, where n E N and h E H. Then

JK(HX)Ñ = h-xn~xJK(H)nhÑ

= h~xJK(H)hÑ = JK(H)Ñ.

Hence JK(H)N c nx6G JK(HX)K(G). Since (JK(H)Ñ)x = x(JK(H)N)

for ail x E G, JK(H)N generates a nilpotent two sided ideal of K(G). Thus

JK(H)N c /a:(G).

2. Main result. From now on, we assume that A' is an arbitrary field of

characteristic/» ^ 0, G a finite group such that/» | o(G), and P a fixed Sylow

/»-subgroup of G.

Theorem 1. Suppose G is a Frobenius group with Sylow p-subgroup P as a

complement. ThenJK(G) = (\X<=G JK(PX)K(G).

Proof. We shall prove this in two parts by showing that each side equals

JK(P)N where N is the Frobenius kernel and A^ denotes the element "2xeNx.

First we shall show that JK(G) = JK(P)N. (Wallace [7] proved, using

modular representation theory, that if G is a group such that G'P is a

Frobenius group with G' as the Frobenius kernel and P as a complement

then JK(G'P) = JK(P)G'. Our result is stronger and its proof uses simpler

techniques.) By Lemma 2, JK(P)N c JK(G). Conversely, let a E JK(G).

Let

« = 2 axx +   2    ayy-
I6JV y<EG-N

Since JK(G) is nilpotent a is nilpotent. Thus by Lemma 1, we have trp(a) =

0. Since/» { o(N) no element x ^ 1 in N is a /»-element. If v E G — N then y
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belongs to some Sylow /»-subgroup of G. Thus y is a /»-element. Therefore

trp(a) = 0 gives

ax +     2      ay = °-
y<=G-N

Since JK(G) C vv(AT(G)) we have

2   ax +      2      Oy = 0
jE/ï y&G-N

and hence a, = 2xfEArax. Now let n E N. Then an-1 E JK(G) and

an-1 =  2   a**"-1 +     2      ayyn~x.
i£iV yBG-N

Therefore, by the same arguments, a„ = 'ExSN ax and hence ax = an for all

nE N.Let hE P. Then a/i-1 E //^G) and ah'x = (2xeAraxAJc/i)/i_1 + a'

where support(a') E G — N. Then by the above argument, the coefficients of

the elements of N in ah~x are all equal. Therefore ah = anh for all n E N.

Hence a = 2hsPahNh. Since a E 7ÄT(G) c w(tf(G)) we have (2hePah)o(N)

= 0 and so LkePah = 0 because o(N) ¥-0'm K. Thus XhePahh E w(K(P))

= /AÏP). Hence a E JK(P)N.

Now we shall prove that 2xeG JK(PX)K(G) = JK(P)N. By Lemma 2, we
have

JK(P)N e R  JK(PX)K(G).
xBG

For the reverse inclusion, let / = (]xeGJK(Px)K(G). Let P, = P,

P2, . . ., P, be all the distinct Sylow /»-subgroups of G. Then / ^ 0 in K

because t = o(N). Therefore /= C\U\JK(Pi)K(G)- Now P, annihilates

JK(P,)K(G) on the left so P,7 = 0 Vi. Since G = NP we have G/ = 0. Now

G = JV u Pi U P2 U ■ • • U P, where unions are disjoint on the nonidentity

elements. Therefore G + f • 1 = ./V + 2'_,P, in K(G). But P¡I = 0 Vi and

G/ = 0. Therefore (t ■ 1 - TV")/ = 0. Let a E /. Then (/ • 1 - N)a = 0 and

so a = M*/r (because r ¥= 0 in #). Therefore a E NK(G). But G = NP and

Nn = ÑVnE N. Therefore a E ÑK(P). Let a = /fy? where ß E K(P) and

ß = Sygpíy. Since a E / c w(K(G)) we have / • (2ySP Oy) = 0 and so

1ySPay = 0 (because t ¥= 0 in K). Thus /? E w(ÄT(P)) = JK(P). Hence a E

NJK(P). This proves Theorem 1.

Corollary 1. Let G be a finite group and p \ o(G). Suppose there exists a

normal subgroup G0 of G such that p \ (G : G0) and G0 is a Frobenius group

with P as a complement subgroup. Then JK(G) = fl xeG JK(PX)K(G).

Proof. JK(G) = JK(G0)K(G) [5, Theorem 16.6] and by Theorem 1,

JK(G0) = nxec/K(Px)K(G0). Hence
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JK(G) = [n   JK(Px)K(G0))k(G)
V x E G0 '

=  fi   JK(PX)K(G)= fi  JK(PX)K(G).
x E G0 x: G C

(The last equality follows from the fact that the Sylow /»-subgroups of G are

precisely those of G0.)

Professor Passman in a letter asked if the converse of Corollary 1 holds. He

thus asked: If G is a finite group such that p\o(G) and JK(G) =

D JK(P)K(G) as P ranges over Sylow/»-subgroups of G for some field K of

characteristic p ¥= 0, does there exist in G a normal subgroup G0 such that

p\(G : G0) and that G0 is a Frobenius group with a Sylow /»-subgroup as a

complement? We give below a generalization (Corollary 2) of Corollary 1.

This generalization yields a negative answer to the above question.

Corollary 2. Suppose there exist subgroups G0, P0 of the finite group G such

that G D G0 D P D Pq, GQ < G, P0 < G0 and G0/P0 is a Frobenius group

with P/P0 as a complement. Then JK(G) = D JK(P)K(G), P ranging over

Sylow p-subgroups of G.

Proof. Since G0/P0 is a Frobenius group with P/P0 as a complement. By

Theorem 1 we have

JK(G0/P0)=   R   w(K(Px/P0))K(G0/P0).
x£G0

Taking the complete preimage of both sides under the canonical map from

A(G0)toA:(G0/P0)weget

JK(G0)=  R   JK(PX)K(G0).
xSG0

JK(G) = JK(G0)K(G) [5, Theorem 16.6]. Hence

JK(G) = [ fi   JK(Px)K(G0))k(G)
uec0 /

=  fi   JK(PX)K(G)= R  JK(PX)K(G).
x E G0 x E G

Example. For /> = 2, S4 satisfies the conditions of Corollary 2, by taking

G0 = S4 and P0 = V4, but S4 does not satisfy the conditions of Corollary 1.

This answers the question of Passman. Of course, now one can ask: Is the

converse of Corollary 2 true?

3. Counterexample. The equality JK(G) = f)JK(P)K(G) where P ranges

over /»-Sylow subgroups of G is false in general, as the following example

shows.
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Example (Passman). Let

N =

1 a ß

0 1 y

0    0      1

\a, ß,iE ZßZ

N is a group of order 27 and V* E N, x3 = 1. It is easy to see that N is

generated by a, b, c where

a =
1 1 0
0 1 0
0    0     1

1 0 0
0 1 1
0    0     1

and   c =
1 0 1
0 1 0
0    0    1

(a, b) = c and c is central. Define a: N —> N by

1 a ß

0 1 y

0    0     1

1     -a        ß

0 1     -y

0 0 1

One checks that a is an automorphism of N of order 2 and o(a) = a2;

a(b) = b2; o(c) = c. Let H = (x) the cyclic group of order 2.

Let G = NXaH the semidirect product of N by H i.e. xn = a(n)x Vn £

A^. G is generated by the elements x, a~xxa and b~xxb. So G is generated by

the elements of order 2. o(G) = 54 and H is a Sylow 2-subgroup of G. Let K

be an algebraically closed field of characteristic 2. We shall show that

JK(G) ¥= n xeG JK(HX)K(G). Since G/N «ííwe have G' c N. Also c =

(a, b) E G', xa = a2x = a(ax) so a E G', and xb = ¿>2x = b(bx) so b E G'.

Thus G' = N. Hence G = G'//. Since c E G - H and c is central we have

NG(H) ¥" H. So G'H is not a Frobenius group with H as a complement.

Hence by [7, Theorem, p. 103] JK(G) is not central. But we shall show that

DxeGJK(Hx)K(G) is central. Let / = nxgG JK(HX)K(G). Now let x be

an element of order 2 so that P = (x) is a Sylow 2-subgroup of G. Then

/ cJK(P)K(G) = (l + x)K(G)

so (1 — x)I = 0. Since G is generated by elements of order 2 therefore

w(K(G)) is generated as left ideal by the set {(1 - x)\o(x) = 2) [3, Lemma

1, p. 153]. Thus wK(G)I = 0 so / c GK(G) [3, Lemma 2, p. 154]. Hence / is

central.
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