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ROTUND COMPLEX NORMED LINEAR SPACES

P. R. BEESACK, E. HUGHES AND M. ORTEL

Abstract. We show that rotundity in a complex normed linear space is

equivalent to the property that for any distinct vectors x and>> of unit norm,

a complex number a may be found for which \\ax + (1 - a)y\\ < 1. This

leads to a natural proof of a result due to Taylor and Foguel on the

uniqueness of Hahn-Banach extensions.

A normed linear space (X, || • ||) is rotund (or strictly convex) if whenever

x,y E X with x ¥= y and ||x|| = ||>>|| = 1 we have || \(x + y)\\ < 1. It is well

known that in this case we actually have ||ix + (1 — t)y\\ < 1 for 0 < t < 1.

Moreover (cf. A. E. Taylor [1, p. 544]) it is easy to see that if X is not rotund

there exists a real line segment tx + (1 — t)y, 0 < t < 1 (x ¥= y), all of

whose points lie on the surface of the unit ball, i.e., \\tx + (1 - t)y\\ = 1,

0 < / < 1.

All of this applies whether A' is a real or complex normed linear space. In

the case that X is a complex linear space we shall prove the following

alternative characterization of rotund spaces. Geometrically the character-

ization states that if X is not rotund there exists a complex line ax + (1 —

a)y, a E C (x ¥= y, \\x\\ = \\y\\ = 1), all of whose points lie outside, or on the

surface of, the unit ball.

Theorem 1. A normed linear space (X, || • ||) over the complex field C is

rotund if, and only if, X has the property (L): whenever x,y E X with x ¥= y

and \\x\\ = ||_y|| = 1 we have \\ax + (1 - a)y\\ < 1 for some a E C.

Proof. Clearly if X is rotund then the property (L) holds with a = \, so it

is enough to prove the converse.

Suppose, then, that X is a complex normed linear space. We shall prove

that if X is not rotund then X does not have property (L). Suppose that

x,y E X with x ¥=y and \\x\\ = ||.y|| = ||(x + y)/2\\ = 1. By the Hahn-

Banach theorem, there is an x* E X* such that ||x*|| = 1 = x*((x + y)/2).

So x*x/2 + x*y/2 = 1 and |x*x| < 1, \x*y\ < 1, and since 1 is an extreme

point of the unit disk it follows that x*x = x*y = 1. Hence for any complex

number a,

\\ax + (1 - a)y\\ >\x*(ax + (1 - a)y)\ = 1,

and so property (L) fails.
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We remark that the above proof uses the Hahn-Banach theorem, but the

axiom of choice is not really required, because a simple argument shows that

it is sufficient to prove Theorem 1 for spaces of two (complex) dimensions,

and so only the finite-dimensional Hahn-Banach theorem is needed. Even in

two dimensions it appears difficult to give a purely geometric proof.

As an application of Theorem 1 we prove the following result due to Taylor

[1, Theorem 6] and Foguel [2].

Theorem 2. Let X be a complex normed linear space. Then all bounded

linear functionals defined on subspaces of X have unique norm-preserving linear

extensions to X if, and only if, the conjugate space X* is rotund.

Proof. Suppose X* is rotund but that not all Hahn-Banach extensions are

unique. That is, there is a subspace F of A* and a bounded linear functional

v* on V having distinct linear extensions x*,y* E X* with ||x*|| = \\y*\\ =

\\v*\\. We may assume that ||u*|| = 1, clearly. Now z* = ax* + (1 — a)y* is

a linear extension of v* for all a E C. By rotundity we have

\\<xx* + (1 - a)v*a||< 1

for some a E C. This is impossible since, for all a,

flax* + (1 - a)y*\\ > sup   |fj*(u)| = 1.
t)6K

IMI-1

Conversely, suppose that X has the unique Hahn-Banach extension

property. To see that X* is rotund, take any x*y* E A** with x* ¥=y*,

\\x*\\ = ||y*|| = l.Let

V = ker(;c* - y*) = {x E X: x*x = y*x),

and let v* he the restriction of x* (or y*) to V; v* has a unique extension

z* E X* with ||z*|| = \\v*\\ < 1. This last inequality follows from the

unique-extension property and the fact that x* and y* both extend v*. Fix

any x0 E X — V, so x*x0^ y*x0. Hence the system of equations

ax*x0 + ßy*x0 = z*x0,       a + ß = 1,

has a unique solution (a, ß) E C2, so there exists a E C such that

ax*x0 + (1 - a)y*x0 = z*x0.

Since X = Sp{x0, V) it follows that ax* + (I — a)y* = z*, and we now

have

||ax*-r-(l-a)v*|| = ||z*||<l,

so that X* is rotund by Theorem 1.



44 P. R. BEESACK, E. HUGHES AND M. ORTEL

References

1. A. E. Taylor, 77k; extension of linear functional, Duke Math J. 5 (1939), 538-547. MR 1, p.
58.

2. S. R. Foguel, On a theorem by A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325. MR 20
#219.

Department of Mathematics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

(Current address of P. R. Beesack and E. Hughes)

Current address (M. Ortel): Department of Mathematics, University of Hawaii at Manoa,

Honolulu, Hawaii 96822


