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CRITERIA FOR FUNCTIONS TO BE OF

HARDY CLASS Hp

SHINJl YAMASHITA

Abstract. Let / be holomorphic in the disk \z\ < 1. Two criteria (see (I)

and (II)) for/ to be of H2 are extended to the case of Hp, 0 <p < + oo, by

the methods different from known ones for p = 2.

1. Results. By/we always mean a function holomorphic in D = {\z\ < I).

We set for 0 <p < + oo,

£=f l/r/2"-|/'l;
roughly speaking, j£" is the absolute value of the derivative of f^2 which has

no meaning when/has a zero in D. Obviously,/? = |/'|. We shall show that

f£, which may assume the value + oo, plays important roles for/ to be of class

Hp (0 <p < + oo) in D. Here,/is said to be of Hardy class Hp (0 <p < +

oo)if

/A/)-¿jr2*i^«")r"*

is bounded for 0 < r < 1 (see [1, p. 2]). Set

Mf) - //0 - W(zf àx dtp       (z = x + iy).
D

The following (I) is observed in {5, Remark (a), p. 208].

(I) fis of class H2 if and only ifA2(f) < + oo.

This is the case/» = 2 in our

Theorem 1. Let f be a function holomorphic in D, and let 0 <p < + oo.

Then f is of class Hp if and only if Ap(f) < + oo.

Our proof of Theorem 1 is different from that of (I) (see [5, p. 208]) where

the coefficients of the Taylor expansion of/ about 0 play the essential roles.

Now, let G be a subdomain of D such that the boundary of G has the only

one point 1 in common with the unit circle. Assume that there exists /-„,

0 < r0 < 1, depending on G, such that the intersection of G with each circle

{|z| = r), r0 < r < I, is of linear measure rq>(r), where

lim inf (1 - r)~\(r) >0 (1.1)
r—*\
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and

lim sup (1 - r)~x<p(r) < +00. (1.2)
r->l

Let @ be the family of all domains G of the type described above. A typical

example of G is a triangular domain in D with one vertex at 1, which we shall

call, for short, a triangular domain at 1. Of course, G E § may look like a

"Swiss cheese", having many holes. Denoting

G(9) = {z ED\e~i9z E G),      0E[O,27r],

we say that/satisfies the/7-Lusin property with respect to G £ § if

Lp(f,G,0) = // f;(z)2dxdy
G(9)

is summable with respect to 9 on [0, 2tt] (0 <p < + 00); thus, it follows that

Lp(f, G,0)< + 00 for almost every 0 in [0, 27r].

G. Piranian and W. Rudin [4, Theorem 1] reformulated (in effect, with an

addition) N. Lusin's theorem [3] as follows.

(II) /// E H2, then f has the 2-Lusin property with respect to each triangular

domain at I. Conversely, if f has the 2-Lusin property with respect to a certain

triangular domain at 1, thenf E H2.

Again, this is the casep = 2 in our

Theorem 2. Let f be a function holomorphic in D, and let 0 <p < + 00. If

f E Hp, then f has the p-Lusin property with respect to each domain of class §.

Conversely, if f has the p-Lusin property with respect to a certain domain of §,

thenf E Hp.

Our proof of Theorem 2 is different from that of (II) (see [3] and [4]) where

the coefficients of the Taylor expansion of/about 0 play the essential roles.

2. Proof of Theorem 1. First of all, the local consideration of j£", near the

zeros off, shows that for each 0 <p < +00 and for each 0 < r < 1,

E„{r,f)" // $(z)2dxdy< +00.
\*\<r

In effect, G. H. Hardy and P. Stein (see [2, Theorem 3.1, p. 42]) proved much

more:

It then follows from the integration that

Ip(r,f) - |/(0)|' = \   C Ep(t,f)rx dt,       0 < r < I. (2.1)
IT      JQ

Especially,

C Ep(t,f)rx dt < -boo (2.2)
•'0
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for each 0 < r < 1. Now, it follows from (2.1) that,/ E Hp if and only if

Ç Ep(t,f)t~x dt<+oo. (2.3)

In view of (2.2) one can conclude from (2.3) that, / E Hp if and only if

(2.4)Ç Ep(r,f)dr< +oo.

Now, letting Xr(z) he the characteristic function of the disk  {\z\ <r),

0 < r < I, one observes that

whence

f  Xr(z) dr = 1 - |z|,       zED,

f Ep(r,f) dr = f dr // f¡(z)2X,(z) dx dy

= jj\Cxr(z)dr
D      J0

%(z)2 dxdy = Ap(f).

This equality, together with (2.4), completes the proof of Theorem 1.

3. Proof of Theorem 2. Let G E % with r0 and <p as described in the

definition of G. Letting X(z, 9) be the characteristic function of G(0),

0 E [0, 2tt], one observes that

f * X(z, 0)d0,       zED,

is the linear measure of the set {e'e\z E G(0)}. Therefore,

<p(\z\)= (2"x(z,0)d0,        r0<|z|<l.

On the other hand,

^(fiG)^^ Lp(f,G,0)d9

(3.1)

= // [f2*X(z,B)
D        J0

fï(z)2 dx dy. (3-2)

It follows from (1.1), (1.2), (3.1), and (3.2) that L^f, G) < + oo if and only if
there exists r2, r0 < r2 < 1, such that

//     (I - \z\)%(z)2 dx dy < +00.
'2<M<1

(3.3)

Since (3.3) is equivalent to Ap(f) < + oo, Theorem 2 now follows from

Theorem 1.
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