OPEN NONNEGATIVELY CURVED 3-MANIFOLDS WITH A POINT OF POSITIVE CURVATURE

DOUG ELERATH

ABSTRACT. Let M be a complete open nonnegatively curved Riemannian 3-manifold with a point at which all sectional curvatures are positive, and suppose that M contains a pole. Then M is not flat on the complement of any compact set. Note that this is clearly false for 2-manifolds.

In this short note I will prove the following: Let M^3 be a complete open nonnegatively curved 3-manifold with a point at which all sectional curvatures are positive. Suppose further that M contains a pole. Then M is not flat off any compact set.

Despite the ease with which this is proven, I feel that this formal presentation is warranted on several grounds. Among others, these include the following: (1) the result is, perhaps, counterintuitive—it is clearly false in two dimensions; (2) it opens up similar questions in higher dimensions which cannot be so easily answered; (3) finally, if the need for a pole represents a defect in the proof and not a real restriction, which I believe to be the case, it would lead to one of the few instances in which a geometric condition at one point implies a global geometric (not topological) result.

Notation and preliminary remarks. (1) M will always denote a complete Riemannian manifold.

- (2) A point p in M is called a *pole* (see [2]) if the exponential map \exp_p : $M_p \to M$ is a submersion or has maximal rank on all M_p . If p is a pole, \exp_p will be a diffeomorphism if M is simply connected.
- (3) If M^3 is an open nonnegatively curved 3-manifold with a point of positive curvature, then (see [1]) M is diffeomorphic to \mathbb{R}^3 ; in particular it is simply connected.
- (4) $T_r(A)$ will denote the open tubular neighborhood of radius r about the set $A \subset M$, and $S_r(A)$ will denote $\partial T_r(A)$, the sphere of radius r about A. N.B. $S_r(A)$ is contained in M, not TM.
- (5) If $x \in M$ and γ is a normal geodesic ray in M with $\gamma(0) = x$, then $H_x(\gamma)$ will denote the complementary half-space determined by x and γ ; i.e. $H_x(\gamma) = M \setminus \{y \in M | d(\gamma(t), y) < t, t \in [0, \infty)\}$. Recall that $H_x(\gamma)$ is totally convex if M is nonnegatively curved (see [1]).
- (6) If C is an oriented codimension one submanifold of M with orientation vector field N, i.e., N is a unit length section of the normal bundle of C in

Received by the editors July 14, 1978 and, in revised form, September 26, 1978. AMS (MOS) subject classifications (1970). Primary 53C20.

TM, let II_N be the second fundamental form on C relative to N, so that $II_N(X, Y) = \langle \nabla_X N, Y \rangle$ for X and Y in TC.

(7) We call a q-form with values in p-forms a (q, p)-form. For a résumé of the calculus of (q, p)-forms, see for example [3].

It would seem that the following two lemmas, although surely known in some quarters, do not appear in the literature. Hence I have included brief proofs.

LEMMA 1. Let M be a complete open nonnegatively curved manifold, and let $p \in M$ be a pole. If $x \in S_r(p)$ and γ is the ray originating at p and passing through x, let $N(x) = \gamma'(x)$ determine an orienting vector field N for $S_r(p)$. Then II_N is positive semidefinite on $S_r(p)$.

PROOF. Let x and γ be as in the statement of the lemma, and suppose that $\gamma(0) = p$, $\gamma(a) = x$. Then $\gamma|_{[a,\infty)}$ is a ray originating at x, and so the complementary half space $H_x(\gamma)$ may be constructed. Clearly $T_r(p) \subset H_x(\gamma)$, and so the support plane for $H_x(\gamma)$ at x is a support plane for $T_r(p)$ at x. Since $H_x(\gamma)$ is at least locally convex, the lemma follows. \square

REMARK. Using the same underlying idea one could easily give an elementary, if somewhat longer, proof of this lemma using only the Rauch comparison theorem.

LEMMA 2. Let M^n be a complete open nonnegatively curved manifold. Let $C \subset M$ be an oriented codimension one submanifold with orientation vector field N. Extend N to a neighborhood of C by unit speed geodesics; i.e., if $y = \exp_x t_0 N(x)$ for $x \in C$, let $N(y) = (\exp_x t N(x))'(t_0)$. Furthermore suppose that \prod_N is positive semidefinite on C. Set $C_t = \{y | y = \exp_x t N(x) \text{ for some } x \in C\}$. Then $(d/dt)(\int_{C_t} \det \prod_N)_{t=\rho} \leq 0$ as long as C_t is smooth and \prod_N is ≥ 0 on C_t for all $0 \leq t \leq \rho$.

PROOF. Regard II_N as a (1, 1)-form with $II_N(X)(Y) = \langle \nabla_X N, \cdot \rangle(Y) = \langle \nabla_X N, Y \rangle$. Then we can write $\int_{C_i} \det II_N = \int_{C_i} \langle N, \cdot \rangle \wedge II_N^{n-1}$, where $\langle N, \cdot \rangle$ is a (0, 1)-form, and thus $\langle N, \cdot \rangle \wedge II_N^{n-1}$ is an ((n-1), n)-form, and thus is integrable over C_i . Furthermore,

$$\int_{C_i} \langle N, \cdot \rangle \wedge \Pi_N^{n-1} - \int_{C_{i-1}} \langle N, \cdot \rangle \wedge \Pi_N^{n-1} = \int_{D_{i,\bullet}} d(\langle N, \cdot \rangle \wedge \Pi_N^{n-1}),$$

where $D_{t,e} = T_t(C) \setminus T_{t-e}(C)$. But an easy computation yields

$$\int_{D_{t,\epsilon}} d \left(\langle N, \, \cdot \rangle \wedge \Pi_N^{n-1} \right) = \int_{D_{t,\epsilon}} \Pi_N^n + (n-1) \int_{D_{t,\epsilon}} \langle N, \, \cdot \rangle \wedge \Omega_N \wedge \Pi_N^{n-2},$$

where Ω_N is the (2, 1)-form $\Omega_N(X, Y)(Z) = \langle R(X, Y)N, \cdot \rangle(Z) = \langle R(X, Y)N, Z \rangle$.

Since $\nabla_N N = 0$, $\Pi_N^n = 0$ on $D_{t,e}$. Furthermore, if X_1, \ldots, X_n is a local orthonormal basis of eigenvectors of Π_N with eigenvalues $\lambda_1, \ldots, \lambda_n$, and $X_1 = N$, and if $K_{ij} = -\langle R(X_i, X_j)X_i, X_j \rangle$, then

$$\langle N, \cdot \rangle \wedge \Omega_N \wedge \Pi_N^{n-2}(X_1, \ldots, X_n)(X_1, \ldots, X_n)$$

= $(n-2)! \sum_{j=2}^n - \left[K_{ij} \left(\prod_{\substack{i \neq 1 \ i \neq j}} \lambda_i \right) \right].$

But since $K_{1j} > 0$ and $\lambda_i > 0$ for all 0 < i, j < n,

$$\int_{C_{\epsilon}} \langle N, \cdot \rangle \wedge \operatorname{II}_{N}^{n-1} - \int_{C_{\epsilon-1}} \langle N, \cdot \rangle \wedge \operatorname{II}_{N}^{n-1} \leq 0. \quad \Box$$

PROPOSITION. Let M^3 be a complete open nonnegatively curved 3-manifold with a point q in M at which all sectional curvatures are positive. Suppose further that M contains a pole p. Then M is not flat off any compact set.

PROOF. Let r be any real number and let X and Y denote vector fields over $S_r(p)$. Let $K_r(X, Y)$ denote the sectional curvature in M of the section spanned by X and Y, and let $\overline{K_r}(X, Y)$ denote the curvature in the induced metric in $S_r(p)$ of the section spanned by X and Y. Then it is standard that $K_r(X, Y) = \overline{K_r}(X, Y) - \det II(X, Y)$. Furthermore, the Gauss-Bonnet theorem states that $\int_{S_r(p)} \overline{K_r} = 4\pi$, so that

$$\int_{S_r(p)} K_r = 4\pi - \int_{S_r(p)} \det II.$$

But Lemma 2 then implies that $(d/dt) \int_{S_r(p)} K_r > 0$. Hence if r > d(p, q), $\int_{S_r(p)} K_r > 0$.

REMARK. Note that, since \exp_p is volume decreasing (K > 0), one obtains a bound on the rate at which sectional curvature density can decrease as r increases.

REFERENCES

- 1. J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1972), 413-443.
- 2. D. Gromoll and W. Meyer, On complete open manifolds of positive curvature, Ann. of Math. (2) 90 (1969), 75-90.
- 3. W. A. Poor, Some results on nonnegatively curved manifolds, J. Differential Geometry 9 (1974), 583-600.

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305 (Current address)

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVALLIS, OREGON 97331