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COMPLETE BASES AND WALLMAN

REALCOMPACTIFICATIONS

JOSE L. BLASCO1

Abstract. We study a particular class of separating nest generated intersec-

tion rings on a Tychonoff space X, that we call complete bases. They are

characterized by the equality ß(v(X, ^D)) = w(X, e¡>) between their

associated Wallman spaces. It is proven that for each separating nest

generated intersection ring <$ there exists a unique complete base "D such

that v(X, ty) = v(X, tf)). From this result we obtain a necessary and

sufficient condition for the existence of a continuous extension to v(X, 60)

of a real-valued function over X. Some applications of these results to

certain inverse-closed subalgebras of C(X) are given.

The word space will refer to Tychonoff spaces. In this paper we consider

the Wallman compactification u(X, <5D) and the Wallman realcompacti-

fication v(X, fy ) associated with a given base2 on a space X. For definitions

and basic results the reader is referred to [1], [9], [10]. We study the bases ^

that coincide with the trace on X of all zero-sets in its associated space

v(X, "D ). These bases, that we call complete, have interesting properties. They

are characterized by the relation ß(v(X, 6D)) = u(X, <5D).3 For each base ^

on X there exists a unique complete base <>D such that v(X, ty) = v(X, <3)).

The base <3) is the largest base with the above property and the smallest

complete base on X containing ^.

Frink [4] has shown that the real-valued functions over a space X which

may be continuously extended to o¡(X, 6D) are those which are ^-uniformly

continuous. In [3] D'Aristotle defined countable ^-uniform continuity and

he showed that it is a sufficient but not a necessary condition for the

existence of a continuous extension to v(X, ty ) of a real-valued function over

X. A necessary and sufficient condition has been obtained by Bentley and

Naimpally in [2, Theorem 6]. We give another condition by means of the base

4).
In order to provide examples of noncomplete bases,  a general result
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2By a base on a space X is meant a separating nest generated intersection ring on X (A. K.

Steiner and E. F. Steiner [10]). R. A. Alo and H. L. Shapiro [1] use the term strong delta normal

base.

3Two extensions 7, and T2 of a space X are said to be equivalent if they are homeomorphic via

a map that leaves X pointwise fixed. In this case we write Tx = T2.
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(Theorem 4) is proven. From this result we derive that the a-algebra of all

Lebesgue measurable sets of the real line R is a noncomplete base for the

discrete space R.

In the last section we give some applications of the complete bases to

certain inverse-closed subalgebras of C(X) (called algebras), as a

consequence of an important relationship between algebras and bases stated

in [10]. To each algebra A on X a certain natural base % (A) on X is

associated. We find that an algebra A on X is C(Y) for some space Y if and

only if %(A) is complete. Hence, the examples of noncomplete bases provide

examples of algebras that are isomorphic to no C ( Y).

Complete bases. When there is no question as to the space X, we will write

u(X, 6D) (resp. v(X, <$)) as simply «(<$) (resp. !;(<$)). The family of all

zero-sets in X will be denoted by Z(X). Let F be a nonempty subset of X.

The (^-closure of Y is the set Q(Y, X) of all points x E X for which every

zero-set in Z(X) containing x has a nonempty intersection with Y. The

subset Y is ("»-dense in x if Q(Y, X) = X.

The following result about extension of maps is needed.

Theorem 1. Let X be a dense subspace of a space T and let ty be a base on a

space Y. A continuous map <p: X —* Y has a continuous extension from T to

i'C'D) if and only if for any sequence {Z>„}"=1 of sets in ty such that (~\™=xDn

= 0, we have n^.c^m ~x(Dn) = 0.

Slight modifications in the proof of Theorem 9.9 in [11] show the result.

A base 6D on a space X is said to be complete if it coincides with the family

<î) = {Z n X: Z E Z(u( <$))}. Since <$> is the trace on X of all zero-sets in

the Wallman compactification u(X, <3D) [10, Theorem 2.2], we have <$> c $).

An example of a complete base is Z(X). Later, various examples of

noncomplete bases will be given.

The following theorem is the main result.

Theorem 2. // ^ is a base on a space X, then v(tf)) = v^).

Proof. For convenience we write E = v^) and F = v^). Since °v c 6D,

from Theorem 1 there exists a continuous map \¡/ from E into F whose

restriction to X is the identity. It suffices to prove that \p is a bijection from E

onto F whose inverse is continuous.

Let p be an arbitrary point in F. Then {p) = f) {Z E Z(F): p E Z).

Since X is Q-dense in F [1, Theorem 5.16], the family {Z n X: p E Z, Z E

Z(F)), is a ¿D-ultrafilter with the countable intersection property. If q E

fi {cl£(Z n X): p E Z, Z E Z(F)), then \b(q) = p and therefore \¡/ is onto.

Let us suppose now that qx and q2 are distinct points of E. There exist

Z„ Z2 E <SD such that q¡ E clEZt, i =1,2, and Z, n Z2 =0. If Z/ E Z(F)

and Z/ n X = Z„ then xb(q/) E clA\Z[ n X) c Z/, i = 1, 2. As AT is £-dense

in F and Z, n Z2 = 0, we have that Z{ n Z2 = 0 and iK<7,) ̂ »Kfo)-
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On the other hand, from the ^-density 0f X in F it follows that for any

sequence {Z„}"=1 of sets in 4) with empty intersection, we have C\„*=xclFZn

=0. From Theorem 1, the identity from X c F onto X c E has a

continuous extension from F into E, which coincides with the inverse of \p

[5, 0.12].
Remark. In [6] Hager has proved the following interesting result: Let K be

a compactification of a space X and let tf) be the family {Z n X; Z E

Z(K)). Then the (2-closure Q(X, K) is equivalent to the Wallman realcom-

pactification v(X, ty ). From Theorem 2 above we obtain Q(X, K) =

v(X, ¿D).

The following is an interesting characterization of the complete bases.

Corollary 2.1. A base fy on a space X is complete if and only if

ß(v(6Ö)) = a(öD).

Proof. We write S = (Z n v^); Z E Z^^))}. Necessity. Let us prove

that & = ZM^)). If Z E Z(v(<»u)), then by hypothesis Z n X E 6¡), and

there exists Z' G Z(<4^)) such that Z n X = Z' n X. Since v(<®) is the

(2-closure of X in u(D), then clu(<¡D)(Z' n *) = Z' n vi^). Therefore Z' n

K^) c z c cl^/Z n A-) c Z' n «(<$) and Z = Z' n K6!)). So z e S,
S = Z(y(óD)) and consequently «(K6!)), S) = ^(ui^)). On the other hand,

as «(öD) = wM^), S) [10, Theorem 2.9], it follows that ß^ty)) = «0$).

Sufficiency. By hypothesis «(<$) = «(t^), Z(u(öD))) and as «(^p) =

«(u^), S), thus Ê = Zivi6!))) [10, Corollary 2.3] and therefore ¿D = ¿D.

Corollary 2.2. The following is true: (1) tf) « the largest base of X such

r/iar uCÎ)) = vfö). (2) ty is the smallest complete base in X containing fy.

Proof. (1) Let £ be a base in * such that u(£) = v^). Then v(% = v(£).

From Corollary 2.1 we have «(¿D) = «(£), therefore ¿D = £ and £ c ¿D.

(2) Let f be a complete base in A' containing ^D. Then ^ c f. From

Theorem 1 there exists a continuous map from v(*3) into v^) whose

restriction to X is the identity. By the definition of 6D we conclude that

leí«?.
Let £ be a base on a space A\ The countable covers of X consisting of sets

whose complements are members of £ form a base for a (compatible)

uniform structure on X, denoted by %(£). The countable £-uniformly

continuous functions in the sense of [3] are precisely those (into R) which are

uniformly continuous in the uniformity %(£).

Theorem 3. Let ty be a base on a space X. A real-valued function f on X can

be continuously extended to v^ ) if and only if it is uniformly continuous in the

uniformity %(^))

Proof. Sufficiency. It is a consequence of Theorem 2 above and the

theorem of [3]. Necessity. Given e > 0, if g is the continuous extension off to
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v(<%), the sets Vn = {p E v(<^)): g(p) < ((n - l)/3)e} u {p E v^): g(p)

> ((n + l)/3)e, n = 0, ± 1, ±2, . . . } belong to Z^)). If 0„ = X ~ V„,

then {On: n = 0, ± 1, ± 2, . . . } is a countable cover of X by "^-comple-

ments, on each of which the oscillation of / is less than e, so / is uniformly

continuous in the uniformity %(ty).

Theorem 4. Let X be a realcompact space in which every point is a Gs and let

X* be the set X with a finer completely regular topology. If % is a base in X*

containing Z(X), then % = Z(X*).

Proof. First, let us prove that X* = v($> ). If % is a $ -ultrafilter with the

countable intersection property (c.i.p.) the family f = {Z6 Z(X): Z E %}

is a prime Z^^filter with c.i.p. Let T be the (unique) Z(A")-ultrafilter with

c.i.p. that contains 3" [11, Theorem 6.16]. Since X is realcompact there is a

point x0 in X such that {x0} = f~l {Z: Z E T}. By our hypothesis there

exists a decreasing sequence {Zn}™=x of zero-sets in Z(X) such that X~

intxZ„ E Z(X), n = 1, 2, ..., and {x0} = n"_iZ„. As f is prime we have

that Z„ E 9* c %, n = I, 2,..., and therefore x0 E f) {U: U E %). Then

% is fixed and X* = u(<S). Since X* = v(Z(X*)), from Corollary 2.2 we

have ê = Z(A-*).

The following example shows that the assumption of Z(X) c ^ is

essential.

Example. Let X be an uncountable discrete space and let '"D be the family

{M c X: M is finite or X ~ M is countable}. Thus ^ is a base such that

w(ój)) = v(6¡)) is the Alexandroff compactification of X. Since w^) =

/"{(iX^)) we have ^ = <î), but fy is not the family 'S'(X) of all subsets of X.

Corollary 4.1. Let X be a realcompact space in which every point is a Gs.

Let  ty   be a base on X with  the discrete topology. If Z(X) C <5D, then

¿b = q>(x).

Then, the a-algebra of all Borel sets in ii is a noncomplete base of the

discrete space R, and also, the a-algebra of all Lebesgue measurable sets in R.

Subalgebras of C(X). As usual, C(X) will denote the ring of all

continuous real-valued functions on a space X. By an algebra on X is meant a

subalgebra of C(X) which separates points and closed sets, contains the

constants, and is closed under inversion and uniform convergence. If A is an

algebra on X and %(A) = {Z(f): f E A}, the map A -* Z(A) is a one-to-one

correspondence between the family of all algebras on X and the family of all

bases on X [10, Theorem 4.3]. Moreover, if A is an algebra on X isomorphic

to C(Y) for some space Y, then vY = v(%(A)) and ßY = <4%(A)) [10, 4.4].

Therefore:

Theorem 5. An algebra A on X is isomorphic to C(Y) for some space Y if

and only if ^(A) is a complete base.
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It is known that an algebra on X needs not to be C(X), nor any C(Y)

[6]-[8], [10]. The following result shows that such a situation arises in a very

large class of standard function algebras used in Topology and Analysis. It is

a consequence of Theorems 4 and 5.

Theorem 6. Let X be a realcompact space in which every point is a Gs and let

X* be the set X with a finer completely regular topology. If A is an algebra on

X* containing C(X), then A = C(X*) or A is not of the form C(Y).

Remark. The obvious open problem is to find a constructive method of the

completion 6D. It has to be noted that since the a-algebra of all Lebesgue

measurable sets of the real line R is a noncomplete base of the discrete space

R, many usual set operations have to be disregarded.
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