SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

AN INTERSECTION RESULT FOR TENSOR PRODUCTS OF C*-ALGEBRAS

TADASI HURUYA

ABSTRACT. There exists a C^* -tensor product $A \otimes B$ with C^* -subalgebras $A_1 \otimes B_1$ and $A_2 \otimes B_2$ such that $(A_1 \otimes B_1) \cap (A_2 \otimes B_2)$ strictly contains $(A_1 \cap A_2) \otimes (B_1 \cap B_2)$.

Let A and B be C^* -algebras and let $A \otimes B$ denote their minimal (spatial) C^* -tensor product. For each $\varphi \in A^*$ there exists a unique bounded linear map $R_{\varphi} \colon A \otimes B \to B$ satisfying $R_{\varphi}(a \otimes b) = \langle \varphi, a \rangle b$. Similarly, for each $\psi \in B^*$ there exists a unique bounded linear map $L_{\psi} \colon A \otimes B \to A$ satisfying $L_{\psi}(a \otimes b) = \langle \psi, b \rangle a$.

Let C and D be C^* -subalgebras of A and B, respectively, and put

$$F(C,D) = \big\{ x \in A \otimes B \colon R_{\phi}(x) \in D, L_{\psi}(x) \in C \, (\phi \in A^*, \psi \in B^*) \big\}.$$

We consider A and B canonically embedded in their enveloping W^* -algebras A^{**} and B^{**} , so that $A \otimes B$ is contained in $A^{**} \otimes B^{**}$ canonically. Let C^- and D^- be the weak closures of C and D.

THEOREM. With the above situation, if F(C, D) strictly contains $C \otimes D$ and there exist projections of norm one from A^{**} and B^{**} onto C^- and D^- , respectively, then $(A \otimes B) \cap (C^- \otimes D^-)$ strictly contains $(A \cap C^-) \otimes (B \cap D^-)$.

PROOF. By [2, Proposition 3.7], we have

$$C^- \otimes D^- = \{ x \in A^{**} \otimes B^{**} : R_{\phi}(x) \in D^-, \\ L_{\psi}(x) \in C^- \ (\phi \in A^{***}, \psi \in B^{***}) \}.$$

Let
$$x \in (A \otimes B) \cap (C^- \otimes D^-)$$
. If $\varphi \in A^{***}$, then we get
$$R_{\varphi}(x) = R_{(\varphi|A)}(x) \in B \cap D^- = D.$$

Received by the editors August 1, 1978.

AMS (MOS) subject classifications (1970). Primary 46L05, 46M05.

Key words and phrases. C*-algebra, tensor product.

Similarly, if $\psi \in B^{***}$, we get

$$L_{\psi}(x) = L_{(\psi|B)}(x) \in C.$$

It follows that

$$(A \otimes B) \cap (C^- \otimes D^-) \subseteq F(C, D).$$

The opposite inclusion is clearly true. Thus we obtain

$$(A \otimes B) \cap (C^- \otimes D^-) = F(C, D) \supseteq C \otimes D = (A \cap C^-) \otimes (B \cap D^-).$$

If D is a closed two-sided ideal of B, then D^- is a two-sided ideal of B^{**} . Thus there exists a unique central projection z in B^{**} such that $D^- = B^{**}z$ (see, for example, [1, 1.10.5]). The map $x \to xz$ is a projection of norm one from B^{**} onto D^- .

If A = C, a C^* -subalgebra D is a two-sided ideal of B, and F(C, D) strictly contains $C \otimes D$, then the quadruplet (A, B, C, D) of C^* -algebras satisfies the conditions of the theorem by the preceding remark. Wassermann ([4], [5]) gave several such quadruplets of C^* -algebras. Hence we obtain examples requested by Wassermann [3, Remark 23].

The author would like to thank Professor Simon Wassermann for sending him a copy of a preprint [5].

REFERENCES

- 1. S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, Berlin and New York, 1971.
- 2. J. Tomiyama, Tensor products and approximation problems of C*-algebras, Publ. Res. Inst. Math. Sci. Kyoto Univ. 11 (1975), 163-183.
- 3. S. Wassermann, The slice map problem for C*-algebras, Proc. London Math. Soc. (3) 32 (1976), 537-559.
- 4. _____, Tensor products of certain group C*-algebras, J. Functional Analysis 23 (1976), 239-254.
 - 5. ____, A pathology in the ideal space of $L(H) \otimes L(H)$ (to appear).

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, NIIGATA UNIVERSITY, 951 NIIGATA, JAPAN