
proceedings of the
american mathematical society
Volume 75, Number 2, July 1979

A SIMPLIFIED PROOF OF THE ERDÖS-FUCHS THEOREM

D. J. NEWMAN1

Abstract. We reprove the theorem of Erdôs and Fuchs in additive number

theory. Whereas their solution rested on some special results in the I?

theory of Fourier series, ours avoids these.

We present a variant of the proof of the very pretty theorem of Erdôs and

Fuchs [1]. Our proof is technically a bit simpler than theirs but, of more

importance, it has the aesthetic advantage of sticking closer to the spirit of

generating functions.

Theorem (Erdös-Fuchs). Let A be a set of nonnegative integers and denote

by r(n) the number of solutions to n = a + a', a, a' E A. If for some C > 0,

2ZUo(r(k) - C) = 0(na), then a>\.

Proof. If we write An = SX-oi'W ~~ O tnen we ^ave

(2^)2=T-r7 + (1-^)2^n.     An = o(n«), (i)

Here, as later, we abbreviate our summation notation. It is to be generally

understood that a ranges over the set A, that zz ranges over the nonnegative

integers, and, when we use the letter b, it will range over the nonnegative

integers below N.

So let us multiply (1) by (1 + z + z2 + • • • + zN~x)2, N > 1, and obtain

thereby

(2-a2^)2= t&-z (2*")2+ 0 - **)2«*-24^      (2)

which in turn gives the inequality

|X*-2*f<7^ + 2|2**2v1- (3)
We now integrate this inequality around the circle \z\ — r, r < \, with the

measure of normalized arc length, i.e. \dz\/2itr.

First of all, setting 2za • 2z* = 2cnz", we observe that the cn are integers

so that by Parseval's theorem we obtain

/|2*'2**|2 = 2^2n > 2 v2n = 2^-2^- (4)
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Furthermore if we assume, as we may, that a < 1 then the relation (1) tells us

that, as z -» 1~, (2z°)2 ~ C/(l - z) and this insures the existence of a y > 0

for which (Er2")2 > y/(l - r2). Also we have 2r2b > N-r2N and so (4)

leads to the inequality

f\2za2rf>}[^-T-Nr2». (5)
As to the right-hand side of (3) we first recall the elementary inequality

Ijh¡<,+,°*Th (6)
(obtained, for example, from the expansion for (1 - z)~x/2). Next we apply

Schwarz' inequality to deduce that

(/|2^S^l)2</|2^|2-/|2^f

= S^-2^2,,< N^Alr2». (7)

Now A„ = 0(na), and so, because of the elementary inequality S/i2"/-2" =

0(1/(1 - r2)2a+x) (obtained, for example, by comparison with the definite

integral), we may conclude from (7) that

»/|2»'||S^1<(l_^v,. (8)

To complete the proof we choose r2 = I — N~x, A > 1, so that

r2N > (1 - l/Nf > (1 - x2f = \ and hence œmbining (3), (5), (6) and (8)

gives

(Vy /4)/Vx/2+1 < CN2(\ + A log N) + ANX'2+Xa+^2,

or

Vy" /4 < CNX-X'2 (1 + A log N) + AN*"'1/2. (9)

If, finally, we assume 0 < a < \ then any choice of A which is above 2 but

below l/2a (e.g. A = 3/(1 + 2a)) makes both terms on the right side of (9)

go to 0 as N -> oo and this contradiction completes the proof.
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