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ON BOUNDED SETS IN INDUCTIVE LIMITS OF

NORMED SPACES

KLAUS FLORET

Abstract. A theorem on bounded sets in locally convex inductive limits is

proven and applied in various special cases.

1. For many questions in analysis in locally convex spaces it is of crucial

importance to know how the bounded sets behave. In particular in locally

convex inductive limits of (injective) sequences of normed spaces E =

indn_£n there are various examples given by B. M. Makarov [12] with the

property that bounded sets in E are not situated in any En, or are not

bounded there. It is the purpose of this note to give a sufficient condition for

a sequence (E„) of normed spaces to generate regularly the inductive limit

E = induis,,, i.e., every bounded set in E is situated in some E and

bounded there. Since the closure of {0} in E is bounded in E, regular

inductive limits are Hausdorff; this observation yields an easy proof and a

slight improvement (see §7) of a frequently used result of E. Dubinsky [3] for

an inductive limit to be Hausdorff.

2. The terminology is that of G. Köthe [10] and [6]. The inductive

sequences

1T\ 772 ^3

Ex —* E2 —* E-¡ —* . . .

consist of separated locally convex spaces En and injective (continuous)

linking mappings itn: En -> En+X; this means that the generating spaces can

be considered as linear subspaces of E = induis,,, the linking mappings now

being simply the inclusion mappings. Denoting by t„ the topology of E„ and

by t the (locally convex) inductive limit topology of E = U "_ i E„, the

sequence (En) is called:

(a) a-regular, if every T-bounded subset of E is situated in some En,

(b) ß-regular, if every T-bounded subset of E, which is situated in some En,

is Tm-bounded for some m E N,

(c) regular, if it is both a- and ß-regular, i.e. for every T-bounded subset

A c E there is an n E N such that A a E and A is t„-bounded.

The mentioned counterexamples of B. M. Makarov are (LÄ)-spaces which

show that (a) -h> (b), (b) -h- (a) and that an (Lfi)-space can be neither a- nor
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yS-regular (taking for example the direct sum of the former counterexamples).

It is obvious that the regularity properties of a sequence are inherited by

equivalent sequences. The inductive limit of a regular sequence of different

metrizable spaces is never metrizable [5, p. 94].

3. Grothendieck's factorization theorem for (LF)-spaces [7,1, p. 16] implies

that a Hausdorff (LF)-svace is regular if and only if it is Mackey-complete.

But both, separatedness and completeness are not always easy to check.

Theorem. // (En) is an inductive sequence of normed spaces En with closed

unit balls Kn, such that, for all sequences (em) of positive numbers and all

n G N, 1,mM,xemKm is closed in En+X, then E = indn_fEn is regular, in

particular Hausdorff.

Proof. The method is more or less standard. Let A c E be T-bounded and

not t„-bounded for all n.

(a) Assume that there are em > 0 and xm E A with

-U   G £ £l./C,. =: t/„,       m = l,2,...,n. (*)
m i = i

Then, because i/„_, c Un, (*) holds for all m,n E N:

±-xm£ t/:=    U Um       m=l,2,....
n=l

But U is a T-neighbourhood of zero and ((l/m)xm) T-converges to zero (A

being r-bounded)-a contradiction is established.

(b) Thus (em) and (xm) with (*) have to be constructed: A £ Kx, so there is

an xx G Kx, ex := 1. Proceeding by induction, assume that em > 0 and

xmE A with

1 "
-\íS «,*/ =: U„,       m < n,
m i = i

are given. By the assumption of the theorem U„ is closed in En+X; thus there

is anen+1 with

(\/m)xm <£ Un + en+xK„+x =: Un+X,       m < n

(the xm need not be elements of En+X). Since U„+x is bounded in En+X, the set

A is not contained in (n + l)t/„+1 and this imphes the existence of an

xn+¡ E A with

—pr*n+1et/n+1 = 2^- d
n t * i=i

4. It is clear that the assumption of the theorem must only be satisfied for,

say, rapidly decreasing sequences (e„). But the summation of closed sets is

always problematic which is illustrated by a theorem of V. Klee [10, §24.4]

which states that a quasi-complete locally convex space is semi-reflexive if
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and only if the sum of each two convex, bounded, closed sets is closed (see §8

for an example).

Corollary 1. Let (En) be an inductive sequence of normed spaces, F a

semireflexive locally convex space and T an injective, continuous operator

E = ind^i^ -* F such that TKn is closed for all n. Then E = mdn_E„ is

regular.

Proof. All TKn are o(F, T')-compact and so is

2 emTKm= T\  2 £mKm  .
771=1 \7W-1 /

in particular closed: T being injective and continuous yields that the theorem

applies.   □

Take for example Köthe echelon-spaces: The E„ are of the form (w denotes

the Fréchet-Schwartz space of all real or complex sequences, ak > 0)

lx(ak):=   f(&)G<o|||(4)||:=    2 |&K < °°]-

The unit ball of lx(ak) is closed and bounded in <o, so Corollary 1 gives:

If 0 < ak+x < ak for all k,n E N then the space indn_/'(a^) is regular.

This is a result of E. Dubinsky [2, Proposition 2].

Injective, continuous operators T: G -» F between Banach spaces which

map the closed unit ball onto a closed set are studied by H. P. Lotz, N. T.

Peck, and H. Porta [11] and are called by them semi-embeddings.

5. Another use of the fact that the sum of compact sets is compact yields

Corollary 2. The inductive limit of a sequence of dual Banach spaces such

that the inclusion mappings are dual mappings is regular.

Proof. With E„ = G„', the unit ball (in the dual norm) in En is o(E„, Gn)-

compact and the inclusion map is a(En, G„) — o(En+x, Gn+X) continuous.   □

The unit ball in an equivalent norm of a dual Banach space G' need not be

o(G', G)-compact: It is easily checked that

e = (l,l,...)EK:= {(Q E /«ImaxflKOL, 2 lim sup|¿„|) < 1}

but e is in the a(/°°, /^-closure of K (this norm is from an example in [11]).

The existence of such a norm in the dual characterizes nonreflexive Banach

spaces [8, p. 155].

Corollary 2 can also be proven by the observation that proj^nG„' is

quasibarrelled (strongly bounded sets in the dual are equicontinuous).

6. The familiar fact that inductive limits of sequences of locally convex

spaces with (weakly) compact linking mappings are regular [4], [9] is a

consequence of Corollary 2, using, for example, the following known lemma
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[7, pp. 104-105]; [11]. (For a bounded, absolutely convex subset A of a locally

convex space, L4J denotes the linear hull of A equipped with the Minkowski

norm mA.)

Lemma. Let K be a absolutely convex, weakly compact subset of a locally

convex space E, then there is a Banach-space B such that IK} = B' isometri-

cally and\K\ = B'<^> E is a(B', B) - a(E, £') continuous.

(Take B = £"/ker mKo with the quotient norm of /%o and notice that the

unit ball of B' in E" is K™ = K.)

7. E. Dubinsky [3] gave a sufficient condition for an inductive limit to be

Hausdorff which turned out being very useful. The present method gives

Corollary 3. If(En) is an inductive sequence of normed spaces such that the

bidual mappings E¡f -» Ef¡+, are injective, then E = indn^.£'n is Hausdorff and

ß-regular.

Proof. E := induis,," is regular by Corollary 2, in particular Hausdorff;

since the map E = ind En'L-> E is continuous and injective this implies, that E

is also Hausdorff. A bounded set A c E is bounded in E and thus situated

and bounded in some £„": If A is in Em then it is bounded in Ek, k =

max(m, n), since Ek c Ek as a subspace.   □

In particular all inductive limits (definitions similar to that of ll(ak))

ind„_cA[a£) are Hausdorff and ß-regular because the bidual of cxfKak)'^*

c0(bk) is /00(aJt)c-> l°°(bk), E. Dubinsky (unpublished) constructed such a

sequence of c0's which is not regular.

8. The difficulty applying the theorem comes from V. Klee's

characterization of nonreflexive spaces. That the closed sets with a nonclosed

sum are not all pathological is shown with the following example. It shows

also drastically why the theorem does not help in the case of strict embed-

dings (i.e., E„ being a subspace of En+x)-but this is not severe because there is

a very general result available (e.g. [6, p. 127]).

There is a (necessarily nonreflexive) Banach-space with a closed hyperplane

H, K the unit ball, such that K + K n H is not closed.

Proof. Consider in c0, with the sup-norm || H^,, the closed hyperplane

(a) If (4) G K n H then |, < 1, since otherwise

2 = ~/~4i) T

which is impossible because of |£J < 1 and £„ -» 0.

(b) This implies 2ex := (2, 0, 0,... ) G K + K n H.

(c) If 0 < e < 1 then there is an xt = (1 - e,... ) G K n H: Take
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N      i i¿=2 ¿>V
71-2   * z

and

(1 —      c ~ I e — 1   n       \
e'    2d   '""    2d   '  '- "F

the zeros starting in component N + 1.

(d) Since (2 - e)e, - xe G AT it follows that

2ex = lim [(2 - e)e, - xe + xt] E K + K n H.
e—»0

This, together with (b) establishes the desired example.   □

Does the existence of such a hyperplane characterize nonreflexive Banach-

spaces? Using the theorem of R. C. James on the supremum of linear

functionals, more or less the same proof as above shows that this is true up to

a slight modification of the norm.
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