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FINITARY CODINGS AND WEAK BERNOULLI

PARTITIONS1

A. DEL JUNCO AND M. RAHE

Abstract. An example is constructed of a two state stationary stochastic

process (T, P) whose time zero partition P is weak Bernoulli under the shift,

but which cannot be the image under a finitary coding of any independent

process. A sufficient condition for a partition to be weak Bernoulli is

developed, based on the rate of convergence of the conditional entropy

h(P\PZ¡) to h(P, T).

1. Introduction. Let Z denote the set of integers. For i = 1,2, where A¡ is a

finite or countably infinite set, %¡ is the extension to sequence space of the

a-algebra on A¡ generated by the partition into individual points, and /t, is a

normalized shift invariant measure on (Az, %¡), let T¡ be the shift on the

sequence space (Az, %¡, ¡i¡). There is a natural correspondence between the

sets in the partition at time zero of the sequence space and the elements of A¡;

and by a small abuse of notation we shall also use A¡ to indicate this

partition. By a coding<b: Az —> Az we mean a measurable map from a subset

of measure one of Az to A2 which takes ju,, to /^ and which commutes with

7, and T2. We say that <b is finitary if for /i,-a.e. (x¡) E Af there exists a pair

(s, t) of integers such that whenever (jc„ ...,*,) = (xs, . . . , x,) and when-

ever <b is defined, then (<b(x))0 = (<b(x))0.

For ty and 2. partitions of such a sequence space, we write 9 _Le 2 if

2/>s9,gea \li(P nö)- n(P)fi(Q)\ < e. A partition 9 is said to be weak

Bernoulli under a shift T if for each e > 0 there is an L = L(e) such that

yJm-mTJ9±,\/f,*lTJ9 for all n > 0. We say that the process
(A z, %, ft) is weak Bernoulli if the generator A is.

It is not hard to see (for completeness we sketch a proof at the end of this

article) that whenever <|>: AZ-*AZ has finite expected time to code and

whenever the partition Ax is weak Bernoulli under Tx, then A2 = <K^i) is als°

weak Bernoulli under T2. In particular, if the sequence [T\{AX) for / G Z} is

independent, then A2 must be weak Bernoulli under T2. On the other hand, as

this article shows, not every process (Az, %2, ¡i^ for which A2 is weak

Bernoulli under the shift can be a finitary image of an independent process,

even if we allow an infinite time to code. This negative statement contrasts

with recent positive results in [1] which show that every weak Bernoulli
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process in which the generator is Markovian can be finitarily coded from any

independent process of strictly higher entropy.

We point out that it is already known from unpublished work of D.

Ornstein [3] that there are examples of very weak Bernoulli processes which

are not finitarily codable from any independent process. His argument runs

as follows: If 0 is a state in such a finitary image, then for all / sufficiently

large, in each generic string the set of times at which 0 occurs contains an

arithmetic progression with separation i, where the number of terms in the

progression is arbitrarily large. Ornstein's idea was to construct a partition in

a process with very weak Bernoulli generator by means of Rohlin towers such

that for all /, arbitrarily long arithmetic progressions of times of occurrence of

0 with separation i were impossible. The resulting partition is very weak

Bernoulli since every partition has that property if the generator of the

process has it. However, since it is not true that every partition in a process

with weak Bernoulli generator is again weak Bernoulli [4], we must proceed

by a different method.

Our example consists of a process (T, P) on (0, 1}Z where the time zero

partition P = {P0, P¡) is weak Bernoulli under the shift T, yet where for each

í there is a value k¡ such that whenever the state zero occurs at times which

form an arithmetic progression with separation i, then the progression

contains at most k¡ terms. By the observation of Ornstein, such a process

cannot be a finitary image of an independent process. In constructing this

example we shall utilize a criterion involving the rate at which the conditional

entropy h(P\PlJ) = h(P\ \/lJ T'P) converges to h(P, T). This information

will be sufficient to imply that P is weak Bernoulli under T, provided (T, P)

is mixing.

2. Construction. The construction of (T, P) proceeds in stages. To begin, we

construct an infinite sequence of transformations T¡, each with a two set

generating partition^ P¡ = {P°, P?}. Next we construct the infinite direct

product T = II°11 T¡ and a generating partition P = H?„ i P¡, which will be

countable^by construction. The process (T, P) will be mixing and will have

IJLilhiPlPlJ) - h{P, f)] < L These two conditions will then guarantee
that P is weak Bernoulli under T.

The final step of the construction gives the process (T, P) by a finite

coding of (T, P): if all the components of P are zero, P will be zero;

otherwise P will be one. The partition will be nontrivial; and as the image

under a finite coding of a weak Bernoulli process, (T, P) will again be weak

Bernoulli. Moreover, (T, P) will inherit any limitations on the length of

arithmetic progressions that any of the (7), P¡) may possess.

We now proceed with the details.

Proposition. We can construct an infinite sequence of transformations T¡ for

i = 1, 2, ... ,   each with a two set partition P¡ = {P°, j0,1}, such that the
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processes (T¡, P¡) have the following properties:

(1) u(^') is sufficiently smalljhat h(P¡) < 2~\

(2)2,-, [A(TO):J) - h(Pt, 7))] < 2-,
(3) there is a value k¡ such that no arithmetic progression with separation i of

times at which 0 occursjvill contain more than k¡ terms, and

(4) the process (7), P¡) is mixing.

Proof. Since lim;c_0+x log* = 0, we can find values a, I — a such that

h(a, 1 - a) = - or log a - (1 - a)log(l - a) < 2"'. We then consider an

independent process_ (S, R) on (0, 1}Z with distribution (a, 1 - a). The

distribution of (P?, P¡1) will be chosen close to (a, 1 - a) and this choice will

satisfy the first requirement

We begin with the collection of all strings of length m > 3i from the

independent process (5, R) just selected, and we define a new process which

will travel only through strings with i consecutive 1*8. In so doing we must

avoid not only those strings which fail to have i consecutive l's, but also those

that cannot be forced to lead to a string with i consecutive l's. The following

paragraphs describe the selection of such strings and transitions between

them.

Let Nm be the class of w-strings having a run of at least 2/ - 1 consecutive

outputs of 1, where the run begins in other than the leftmost position. Let Fm

be the class of /w-strings which are not in Nm and which begin on the left

with k consecutive l's and end on the right with j consecutive l's, where

j + k > 2i — I. We may characterize the set Gm = Nm u Fm as the

collection of strings that have a "cyclic run" of length at least 2/ — 1 of l's.

Note that all strings in Gm have a noncyclic run of at least / outputs of 1.

For t G Gm denote by tJ, j = 0, 1, the string formed by deleting the

leftmost digit of / and appending the digit/ on the extreme right. We may

now define a stochastic matrix Mm as follows: Mm(t, s) = a iî t E Nm and

s = t°; Mm(t, s) = 1 - a if t G Nm and j « /'; Mm(t, s) = 1 if / G Fm and

s = /'; and Mm(s, t) = 0 for other t, s G Gm. It is easy to see that there exists

a unique stationary probability measure vm on strings in Gm for which Mm is

the matrix of transition probabilités of a mixing 1-step Markov process with

state space Gm. For each m by using this 1-step Markov process on Gm we

may define a stationary ^w-step mixing Markov process (Tmi, Pmi) on (0, 1}Z

by setting j»{Í¿(«) G PJm<i\u E A) - Mm(t, tJ)&nà n(A) - vm(t), where A

is the finite cylinder set in V™"'^i,iAi,¡ indexed by the w-string /.

Denote by v the measure on m-strings given by the (a, 1 - a) distribution

in (S, R). If we denote by v' the probability measure j>(Gm)~V restricted to

Gm, then we claim that vm = v'. This is virtually obvious since we must verify

that v'Mm = v' for only two cases. Suppose that for s E Gm there exists only

one / G Gm with Mm(t, s) > 0. Observe that / G Pm so Mm(t, s) = 1 and we

have that v'(t)Mm{t, s) = v\t). On the other hand we observe that s and t

both have the same number of l's so v\t) = v'(s). Similarly, if for j G Gm
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there exist distinct t, t G Gm with Mm(t, s) > 0 and Mm(t, s) > 0, we may

verify that

v>{t)Mm{t,s) + v'{î)Mm{î,s) = v\s).

Thus_for each m we have an explicit expression for the distribution of

Vo ' T¡„ti(Pmii). Moreover, an easy probabilistic argument shows that 1 -

v(Gm) goes to zero exponentially fast, so that m[\ — v(Gm)] also goes to zero

as m becomes large. Thus we calculate as follows:

m

= 2   ¡hiPÁiP,)!]) - h(P„ T,)]
7=1

m _

<2 \h(pi\(p¡y1)-h(pi,T¡)]
7=1    L

- »[Mft&)~ V *(5» fi)]
= m[h(FM^,rl) - A^K*)"')] + m[h{R, S) - h(Pt, ¥,)]

< m|A(^)-') - h(R\(R)-l)\ + m|A(M):L) - *{*\(*V-lm)\

< 4h(a, l - a)m[\ - v(Gm)]

and this product goes to zero as m becomes_large. We now choose an

appropriate value for m and set (•*, P¡) = (Tmi, Pmi). Thus conditions (2) and

(4) are satisfied and condition (3) follows with k¡ = m/i from the fact that

each string in Gm has a run of at least /' consecutive l's.

Next, given the sequence (T„ P¡) we construct in the standard manner the

infinite direct product process (J, P) with f = LT°_, Ti and P = n"!, P¡. We

observe that since 2°°=i h{P^ < 1 we also have that 2°1, \i(P>) < 1, so that

by the Borel-Cantelli lemma the time zero output of the /th component

process is zero for all except a finite number of /'s, except perhaps on a set of

measure zero. Thus P is actually a countable partition. Moreover, sets in the

product^ o-algebra are arbitrarily well approximated by finite cylinder sets in

n' = i (P¡f-i for sufficiently large / so the process (T, P) is mixing. Further

so that

and

h(P ) = lim h MI P¡\ = hm   S h(P,) < 1,
'^°°    \ i      /     '^°° / = i

h(P\P:j) = f h(Pi\(Pi)Z]l)   foreachy
/-i

00 _     .

h(P,T) = 2 HPitT,).
/-i
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Thus

2 \h(p\pz})-h{p,f)
j=\

= S S \h(pi\(pi)-_iJ)-h(pi,fi)]
j = 1   I = I   L 1

= S   I  \h(Pi\(Pi)Z1j) - h(Ph ?,)] < i 2- < 1.
<=1    7=1   L J        /=1

3. Sufficient condition for weak Bernoulli behavior. We now prove that P is

weak Bernoulli under T in a manner which is similar to the way that one

shows an «-step mixing Markov process is weak Bernoulli.

Theorem. If (f, P) is mixing and if SJi, [h(P\PlJ) - h(P, f)] is finite,
then (T, P) is weak Bernoulli.

Proof. Given e > 0 there exists 5 > 0 such that for any partitions 9 and

2, h{<$) - A(^P|2) < 5 implies 9 -L, 2. By the finite sum hypothesis, given

5/3 we can choose TV such that for all positive integers M, K we have that

Q<h(p»:»\p»)-h(p»:?>\p»_K)

<h{p»:»\p»)-h{p»:»\p»_„)

= "If \h{PJ\PJoX) - *(W-i)l
j=N+\   L J

= T [*(*!*:;) - A(^|Pr¿)l < «A
j = N+l   l J

By the mixing hypothesis, having chosen TV we may now choose L^uch that a

second inequality will hold; namely, 0 < h(P~t+N) - h(P[+N\P^) < 5/3.

The first inequality now shows that

h(Pt:^\Pt+N ) - h(Ft:^+i\Pt+N yp0Nv F:i) < 5/3

and also that

h(P~t+N\P?) - h(Pt+N\P0N V PZh) < 5/3.

Thus

0 < *(J&ft, V Pt+N ) - h(Pt:*+i V P~t+N\P~oN V Pzk)

= *(«?Äi V P¿+" ) - h(Pt:»+i\Pt+N VP0NV Pik)

- h{P¡;+N\P0N V PI*K)

< »(¿5KÄ1 v p~t+N ) - h{pt:^\pt+N ) - h{pt+N ) + *-*,

and we are done.
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4. (T, P) ¡snot finitarily codable. The process (T, P) inherits the properties

of each (T„ P¡): any arithmetic progression of times at which 0 occurs with

separation / can have at most k¡ terms. If ( T, P) were the image of a finitary

code from an independent process, there would be some finite string from the

independent process which would code to 0. This string would recur with

positive probability in arbitrarily long arithmetic progressions with separation

/ whenever i is larger than the length of the string. Hence (T, P) cannot be a

finitary image of an independent process.

5. Images under finite expected time to code. A coding <£: Af^>A% is

finitary if for ju,,-a.e. (x,) E A* there exists a pair (s, t) of integers assigned to

(x¡) such that whenever (xs,. .., x,) = (xs,..., x,) and whenever <f> is

defined then (<K*))o = (<H-*))o- Hence we may define a random variable T,

called the time to code, by T(x¡) = min{max(|j|, \t\): (s, t) assigned to (*,)}.

Following [2] we define the term boundedly coded. Let ty and 2. be two

partitions of a measure space (X, ¡i) with automorphism t. We say that ^ is

boundedly coded by 2 with respect to t if for every e > 0 there is a

K = K(e) with V"-o tJ<$ £» V7"= -K tJ% for a11 »■ li is shown m I21that if

^P is boundedly coded by 2- and 2. is weak Bernoulli, then ^P is also weak

Bernoulli.

Lemma. Suppose that <i>: (Az, t)^>(Bz, a) is a finitary coding with finite

expected time to code. Then §~1{B) is boundedly coded by A.

Proof. Since oo > Sf-i tp.{T = t) = 2" , [i{T > t), for e > 0 we can

choose K such that 'L%K^{T > t) < e/2. Now for 0 < k < [n/2] we

observe    that   rk(<j>-lB) Qfl{T>K+k) V-V T J'A    and   t""'(*"'í)

Ql¡{T>K+k) WÍV tJA   S0 that We haVe at laSt VS T7'(<>_1-S) £e V-l" T7v4
for all /i > 0.
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