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FACTORIZATIONS OF FREE ACTIONS OF FINITE GROUPS

ON COMPACT e-MANIFOLDS

VO-THANH-LIEM

Abstract. We show that every free action of a finite group G on a compact

g-manifold Kk x Q is conjugate to the product of a G-free action on a

regular neighborhood of K in R2* + I(R7, if * - 2) and the identity on Q.

Also, sharper results for special finite complexes K are obtained.

1. Free action of finite cyclic groups on S" x Q. Two free actions of a

group G on a topological space M are conjugate if there is a homeomorphism

/of M onto itself such that/ 0\°/~' = \> where A^ and A¿ are correspon-

dent homeomorphisms of M defined by any element g of G.

One wonders which free action of a finite group G on S" x Q is conjugate

to the product of a G-free action on the sphere S" and the identity on the

Hubert cube Q; or equivalently, are their orbit spaces homeomorphic? By use

of Chapman [Ch,] and West [We,] these are equivalent to showing that the

orbit space of the given free action, compact ö-manifold, is simple homotopy

equivalent to a compact topological /i-manifold without boundary.

In this section, we will prove the following theorems.

Theorem 1. Every Z^-free action on S" x Q is conjugate to the product of

the standard Zj-free action on S" and the identity on Q.

Theorem 2. For p > 2, every Zp-free action on S2"'1 X Q is conjugate to

the product of a Zp-free action on S2"~x (S3 X I2, if n = 2) and the identity on

Q-

It is interesting to mention that a similar statement is not true for arbitrary

finite groups.

Let A be a Poincaré complex whose fundamental group is the symmetric

group 53 and whose universal covering space N has the homotopy type of the

3-sphere S3. (Such a complex exists by the second part of Theorem 4.3 in

[W,].) Moreover, since the obstruction to N being of finite type lies in

K°(S3) = 0 [W2, p. 67], we may assume that A is a finite complex.

Now, Theorem 5.2 of [We] or Lemma 4.2 of [ChJ shows that Ñ X Q « S3

X Q. Therefore, an exotic free action of S3 on S3 x Q is obtained naturally,
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since S3 cannot act freely on S3 ([M]). For large n, exotic free actions of S3

on S" x Q can also be similarly obtained.

For the notion of finite Poincaré complex, we refer to Chapter 2 of [W3].

Proof of Theorem 2. For /i = 1, it is trivial. So, we assume n > 2.

Step 1. The orbit space (S2"_1 X Q)/Zp is homotopy equivalent to a lens

space Ln(p; a, 1, ..., l)/o>- some q.

Let N be a finite complex such that N X ß « (S2n~' X Q)/Zp. Then N is

a (Zp, 2/i - l)-polarisation (Definition 2.1 of [T-W]), and by Remark 2.6 of

[T-W], it is a finite Poincaré complex.

Now, by Theorem 4E.3 of [W3], we may assume that N = K U^e2"-1,

where K is the (2/i - 2)-skeleton of the lens space Ln(p; 1,..., 1). Hence,

the fibration Zp -» Ñ-» N is classified by a map <p: N -» L„(p; 1,..., 1).

(For notation of lens space refer to [Co,].)

It is clear that the induced map <p# on fundamental groups is an isomor-

phism. We claim that the degree a of <p is relatively prime to p. Indeed, let a

be a generator of ttx(N) = Zp. By use of the cell-structure of LJ(p; 1,..., 1)

(refer to [Co,]), we can define skeleton-wise a map \l from Ln(p; 1,..., 1) to

.¡V such that ^#|(<p#(a)) = a; hence, (tp ° ip)# is the identity on

itx(L„(p; 1, . . . , 1)). Now, (29.4) of [Co,] shows that the degree of <p ° yb = I

(mod/»). So, the claim is proved.

Again, by (29.4) of [Co,], we have a map 9: L„(p; 1, .-.., 1) -»

Ln(p; a, 1,..., 1) of degree a inducing an isomorphism on fundamental

groups, where q is an integer such that aq = 1 (mod/»).

Now, using the cell-structure of N = K \jf e2"'1 to modify the map 9 ° tp

over a closed ball in Int e2n~x (see [Co,, p. 95]), we may obtain a map u:

N -» Ln(p; a, 1, . . . , 1) such that

(a) u# is an isomorphism on fundamental groups,

(b) degree u = 1.

Then, it is routine to show that u is a homotopy equivalence. The proof of

Step 1 is complete.

Step 2. Case 1. (2/j - 1 > 3).

Let (W; L„(p; a, 1, . . ., 1), M) be a PL A-cobordism such that the torsion

t(W, Ln(p; a, 1, . . ., 1)) = t(u_1), the torsion of the homotopy equivalence

u_l in Step 1 [H, Theorem 12.1]. Then N and M have the same simple

homotopy type. The proof of this case is complete.

Case 2. (2/i - 1 =3). Let (W6; L/j>; q, 1) X I2, M5) be a suitable h-

cobordism as in Case 1 such that dW = [L^p; a, 1) x I2] u M5 u

[L^p; q, 1) X 9/2 X /]. In particular dM = L^p; q, 1) X 3/2.

Now, it is clear that (W6; L2(p; a, 1) X I2, M5) is also an A-cobordism (it

is trivial on L2(p; a, 1) x S1 x I). Moreover, since itx(rV6) = 0, we have, by

the relative A-cobordism theorem ([R-S, Theorem 6.18])

M5 « L\(p; a, 1) X I2 = S3 X I2.

Therefore, the proof of Theorem 2 is complete.   □
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Proof of Theorem 1. Using notation of Step 1 above, N is also a finite

Poincaré complex of formal dimension n, by Remark 2.6 of [T-W]. Then,

N » P„(R) by use of (4.3) of [W3] or by going along the proof of Step 1

above.

Finally, the proof of the theorem is complete since the Whitehead group of

Z2 is trivial [Co,].   □

2. Free actions of a finite group G on compact g-manifolds. For compact

ANR's A and Y, let A s y (X ai, Y) mean that A and Y have the same

(simple) homotopy type.

Given a simplicial complex A and a normal subgroup H of irx(X, *„) such

that G t*t irx(X, x0)/H is of finite order, denote by (A(G), e¿) the G-covering

space  of (X, x0);   i.e.   the  transformation group  of  the  covering  map

(A(G), e0) -> (X, x0) is G, and p^ttx(X(G), ej = H. It is well known that
p

X(G) is unique up to homeomorphism (see [G, Corollary 6.9]).

Let X be the universal covering space of a finite simplicial complex X, A

the integral group ring Z^A and C^(A) the cellular chain complex of A. As

in [W3], we let

H'm(X;B)-H(C.(X)<8>AB),

H*(X;B) = H(üom(Cm(X); B)),

where B is a (right) A-module.

According to the proof of Theorem F in [WJ, the condition Dn can be

restated as follows:

(i) Ht(X; Z) = 0, i > n,
(ii) Hn+x(X; B) = 0 for every A-module B.

For an integer k > I, we define the integer q(k) as follows

(i) q(k) = 3 if k = 2,

(ii) q(k) = k if k * 2.
The main result of this section is the following theorem.

Theorem 3. Given a finite complex Kk, any G-free action on the compact

Q-manifold K X Q is conjugate to the product of a G-free action on a regular

neighborhood of K in R2***)"1" ' and the identity on Q.

As we mentioned before, there might be exotic free actions of finite groups

on 5* X Q. However, since the regular neighborhood of Sk in Rm is homeo-

morphic to Sk x Im~k, we have the following factorization.

Corollary. Any G-free action on Sk X Q is conjugate to the product of a

G-free action on Sk X /**> and the identity on Q.

Before giving a proof for Theorem 3, we need some technical lemmas.

Lemma 1. Let G act freely and simplicially on a finite complex Yq and the

orbit space Xq. If N is a regular neighborhood of X in R2*"1" ', then N(G) is a

regular neighborhood of Y in R2q+ '.



FREE ACTIONS OF FINITE GROUPS 337

Proof. Let p: N(G) -» N be the orbit map, then it is obvious that p is a

PL-immersion. Approximate p by p with p being in general position. Then, p

is also a PL-immersion andp\ Y is a PL-embedding. So there is a small regular

neighborhood U(G) of Y in N(G) such that p\U(G) is a PL-embedding,

where U is a small regular neighborhood of X in iV. So Í/(G) m AY.G) by the

uniqueness of regular neighborhoods.

Lemma 2. Let G act freely on a compact ANR X.IfX has the homotopy type

of a finite complex Kk, then the orbit spaces Y has the homotopy type of a finite

complex of dimension q(k).

Proof. It is obvious that Y is a compact ANR. Let /: Y' -» Y be a

homotopy equivalence, where Y' is a finite complex [WeJ. Then consider the

orbit raapp: Y'(G) -» Y' induced by/. So, we may assume that X is a finite

complex and the action is simplicial.

Now, we intend to use Theorem F of [WJ. Since Y is a finite complex, it

suffices to show that T satisfies the condition Dn: H¡(Y) — 0 for i > q(k) and

HiW+i(Y; B) = 0 for every Zttx T-module B.

By Lemma 1 above, we may assume that A" is a regular neighborhood of a

copy of K in R2**)*1; so (Y, 97) is a finite Poincaré complex of formal

dimension 2q(k) + 1.

By general position theorem, it follows that the pair (X, dX) is a(A:)-con-

nected. Then, so is the pair (Y,dY) by the five-lemma and the homotopy

lifting property of covering maps.

Now by Lemma 1.1 of [WJ, the pair (Y, dY) is homotopy equivalent to a

pair (T„ dY) rel dY such that Yx - dY contains no cells of dimension less

than q(k) + 1. So, it follows that H'r(Y, dY; B) = 0 and Hr(Y, dY; B) = 0
for all r < q(k) and Zw, F-module B.

Therefore, the Poincaré duality theorem in [W3] shows that Hr(Y; B) = 0

and H'r(Y; B) = 0 for all r > q(k) + 1 [W3, Theorem 2.1].

The proof of Lemma 2 is complete.

Proof of Theorem 3. Chapman [Ch,] shows that (K x Q)/G s» L x Q

for some finite complex L. We may assume that dim L < q(k). For L =s L',

dim L' < q(k) by Lemma 2 above. If q(k) = 1, then L s*s L' since the

Whitehead groups of free groups are trivial [Co,, Theorem 11.6]. If q(k) > 3,

from Lemma 1.1 of [CoJ it follows that, given any torsion t G Wh(7r,L'),

there is a finite complex L" d L' such that dim(L" - L') < 3 and the torsion

of the pair (L", L') is t. So, there exists a finite complex L" of dimension q(k)

such that L" —s L.

Let N he a regular neighborhood of L(G) in R29(*)+1 given by Lemma 1.

Then, it is easy to show that K =*, ¿V.

Now, let /: K -» Int N c N be a PL-embedding which defines the simple

homotopy equivalence. Let W he a regular neighborhood of f(K) in Int N,

then (N — Int W; dW, dN) is an A-cobordism of zero torsion.  For it is
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routine to show that the inclusion maps 6W -» (N — Int W) and dW-+ (N —

Int W) are homotopy equivalences; and, furthermore, 3W-»(A — Int W) is

a simple homotopy equivalence by use of the excision theorem 20.3 in [Co,]

and the functorial property of G -» Wh(G) (see [Co,, p. 40]).

Therefore, from the /i-cobordism theorem it follows easily that N fv W.

The proof of the theorem is complete.   □

The author would like to thank R. D. Anderson and M. Colvin for their

interesting discussions, and the referee for his valuable suggestions.
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