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FACTORIZATIONS OF FREE ACTIONS OF FINITE GROUPS
ON COMPACT Q-MANIFOLDS

VO-THANH-LIEM

ABSTRACT. We show that every free action of a finite group G on a compact
Q-manifold K* x Q is conjugate to the product of a G-free action on a
regular neighborhood of K in R**+!(R’, if k = 2) and the identity on Q.
Also, sharper results for special finite complexes K are obtained.

1. Free action of finite cyclic groups on S” X Q. Two free actions of a
group G on a topological space M are conjugate if there is a homeomorphism
f of M onto itself such that f o A, o f 1= A;, where A, and A; are correspon-
dent homeomorphisms of M defined by any element g of G.

One wonders which free action of a finite group G on $” X Q is conjugate
to the product of a G-free action on the sphere S” and the identity on the
Hilbert cube Q; or equivalently, are their orbit spaces homeomorphic? By use
of Chapman [Ch,] and West [We,] these are equivalent to showing that the
orbit space of the given free action, compact Q-manifold, is simple homotopy
equivalent to a compact topological n-manifold without boundary.

In this section, we will prove the following theorems.

THEOREM 1. Every Z,-free action on S” X Q is conjugate to the product of
the standard Z,-free action on S" and the identity on Q.

THEOREM 2. For p > 2, every L,-free action on S =1 % Q is conjugate to
the product of a Z,-free action on S*"~' (S> X I?, if n = 2) and the identity on
Q.

It is interesting to mention that a similar statement is not true for arbitrary
finite groups.

Let N be a Poincaré complex whose fundamental group is the symmetric
group S; and whose universal covering space N has the homotopy type of the
3-sphere S>. (Such a complex exists by the second part of Theorem 4.3 in
[W,].) Moreover, since the obstruction to N being of finite type lies in
K(S;) = 0[W,, p. 67], we may assume that N is a finite complex.

Now, Theorem 5.2 of [We] or Lemma 4.2 of [Ch,] shows that N X Q0 ~ S>
X Q. Therefore, an exotic free action of S; on S* X Q is obtained naturally,
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since S; cannot act freely on S* ((M]). For large n, exotic free actions of S,
on §” X Q can also be similarly obtained.

For the notion of finite Poincaré complex, we refer to Chapter 2 of [W,].

PrROOF OF THEOREM 2. For n = 1, it is trivial. So, we assume n > 2.

Step 1. The orbit space (S**~' X Q)/Z, is homotopy equivalent to a lens
space L (p; q, 1, ..., 1) for some q.

Let N be a finite complex such that N X Q ~ (5"~ X Q)/Z,. Then N is
a (Z,, 2n — l)-polarisation (Definition 2.1 of [T-W]), and by Remark 2.6 of
[T-W], it is a finite Poincaré complex.

Now, by Theorem 4E.3 of [W;], we may assume that N = K U e*!,
where K is the (2n — 2)-skeleton of the lens space L,(p; 1, ..., 1). Hence,
the fibration Z, > N — N is classified by a map ¢: N — L(p; 1, ..., 1).
(For notation of lens space refer to [Co,).)

It is clear that the induced map ¢, on fundamental groups is an isomor-
phism. We claim that the degree a of ¢ is relatively prime to p. Indeed, let «
be a generator of 7(N) = Z,. By use of the cell-structure of L (p; 1,..., 1)
(refer to [Co,]), we can define skeleton-wise a map y from L,(p; 1,..., 1) to
N such that Yu(ps(a)) = a; hence, (p °¢), is the identity on
m(L,(p; 1, ..., 1)). Now, (29.4) of [Co,] shows that the degree of ¢ o ¢ = 1
(mod p). So, the claim is proved.

Again, by (29.4) of [Co,], we have a map 0: L(p; 1,:..,1)>
L(p;q,1,...,1) of degree ¢ inducing an isomorphism on fundamental
groups, where g is an integer such that ag = 1 (mod p).

Now, using the cell-structure of N = K U, "~ to modify the map 8 - ¢
over a closed ball in Int e**~! (see [Co,, p. 95]), we may obtain a map p:
N->L(p;q1,...,1)suchthat

(a) p4 is an isomorphism on fundamental groups,

(b) degree p = 1.

Then, it is routine to show that p is a homotopy equivalence. The proof of
Step 1 is complete.

Step 2. Case 1. 2n — 1 > 3).

Let (W; L(p; g, 1, ..., 1), M) be a PL h-cobordism such that the torsion
(W, L,(p; ¢, 1, ..., 1)) = 7(p~"), the torsion of the homotopy equivalence
p~' in Step 1 [H, Theorem 12.1]. Then N and M have the same simple
homotopy type. The proof of this case is complete.

Case 2. 2n — 1 = 3). Let (W% Ly(p; g, 1) X I?, M®) be a suitable h-
cobordism as in Case 1 such that dW = [Ly(p; ¢, 1) X IJu M° U
[Ly(p; g, 1) X 3I* X I]. In particular dM = L(p; q, 1) X I

Now, it is clear that (W®; L,(p; g, 1) X I%, M%) is also an h-cobordism (it
is trivial on l':z( p; g, 1) X S' X I). Moreover, since ay( W‘) = 0, we have, by
the relative A-cobordism theorem ([R-S, Theorem 6.18])

M*~I(p;q 1) X I*=83x I~
Therefore, the proof of Theorem 2 is complete. [J
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Proor oF THEOREM 1. Using notation of Step 1 above, N is also a finite
Poincaré complex of formal dimension n, by Remark 2.6 of [T-W]. Then,
N = P,(R) by use of (4.3) of [W;] or by going along the proof of Step 1
above.

Finally, the proof of the theorem is complete since the Whitehead group of
Z, is trivial [Co,]. []

2. Free actions of a finite group G on compact Q-manifolds. For compact
ANR’s X and Y, let X =Y (X =, Y) mean that X and Y have the same
(simple) homotopy type.

Given a simplicial complex X and a normal subgroup H of 7,(X, x,) such
that G ~ (X, x)/ H is of finite order, denote by (X(G), ey) the G-covering
space of (X, xy); i.e. the transformation group of the covering map
(X(G), ¢p) rs (X, xo) is G, and p,m,(X(G), ¢;) = H. It is well known that
X(G) is unique up to homeomorphism (see [G, Corollary 6.9]).

Let X be the universal covering space of a finite simplicial complex X, A
the integral group ring Z=, X and C,(X) the cellular chain complex of X. As
in [W;], we let

HYX; B) = H(C(X)®, B),

H*(X; B) = H(Hom(C,(X); B)),

where B is a (right) A-module.

According to the proof of Theorem F in [W,], the condition D, can be
restated as follows:

() H(X;Z)=0,i >n,

(ii) H™*'(X; B) = 0 for every A-module B.

For an integer k > 1, we define the integer g(k) as follows

(@) q(k) =3ifk =2,

(i) g(k) = kif k # 2.

The main result of this section is the following theorem.

THEOREM 3. Given a finite complex K*, any G-free action on the compact

Q-manifold K X Q is conjugate to the product of a G-free action on a regular
neighborhood of K in R¥®*! and the identity on Q.

As we mentioned before, there might be exotic free actions of finite groups
on S* X Q. However, since the regular neighborhood of S* in R™ is homeo-
morphic to $* X I™~¥, we have the following factorization.

COROLLARY. Any G-free action on S* X Q is conjugate to the product of a
G-free action on S* X I and the identity on Q.

Before giving a proof for Theorem 3, we need some technical lemmas.

LEMMA 1. Let G act freely and simplicially on a finite complex Y? and the
orbit space X9. If N is a regular neighborhood of X in R*¥*!, then N(G) is a
regular neighborhood of Y in R**!,
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PROOF. Let p: N(G) — N be the orbit map, then it is obvious that p is a
PL-immersion. Approximate p by p with 7 being in general position. Then,
is also a PL-immersion and 5| Y is a PL-embedding. So there is a small regular
neighborhood U(G) of Y in N(G) such that p|U(G) is a PL-embedding,
where U is a small regular neighborhood of X in N. So U(G) ~ N(G) by the
uniqueness of regular neighborhoods.

LEMMA 2. Let G act freely on a compact ANR X. If X has the homotopy type
of a finite complex K*, then the orbit spaces Y has the homotopy type of a finite
complex of dimension q(k).

PrROOF. It is obvious that Y is a compact ANR. Let f: Y'> Y be a
homotopy equivalence, where Y’ is a finite complex [We,). Then consider the
orbit map p: Y'(G) — Y’ induced by f. So, we may assume that X is a finite
complex and the action is simplicial.

Now, we intend to use Theorem F of [W,]. Since Y is a finite complex, it
suffices to show that Y satisfies the condition D,: H( 17) = 0 for i > g(k) and
H®*(y; B) = 0 for every Zm, Y-module B.

By Lemma 1 above, we may assume that X is a regular neighborhood of a
copy of K in R¥®*1; 5o (Y, dY) is a finite Poincaré complex of formal
dimension 24(k) + 1.

By general position theorem, it follows that the pair (X, aX) is g(k)-con-
nected. Then, so is the pair (Y, dY) by the five-lemma and the homotopy
lifting property of covering maps.

Now by Lemma 1.1 of [W,], the pair (Y, 9Y) is homotopy equivalent to a
pair (Y, dY) rel Y such that ¥, — dY contains no cells of dimension less
than g(k) + 1. So, it follows that H/(Y, dY; B) =0 and H'(Y,dY; B) =0
for all r < g(k) and Z#,Y-module B.

Therefore, the Poincaré duality theorem in [W;] shows that H'(Y; B) =0
and H/(Y; B) = Ofor all r > g(k) + 1 [W,, Theorem 2.1].

The proof of Lemma 2 is complete.

PROOF OF THEOREM 3. Chapman [Ch,] shows that (K X Q)/G~ L X Q
for some finite complex L. We may assume that dim L < ¢(k). For L = L',
dim L’ < g(k) by Lemma 2 above. If g(k) =1, then L =, L’ since the
Whitehead groups of free groups are trivial [Co,, Theorem 11.6}. If g(k) > 3,
from Lemma 1.1 of [Co,] it follows that, given any torsion * € Wh(xr,L’),
there is a finite complex L” O L’ such that dim(L” — L’) < 3 and the torsion
of the pair (L”, L) is 7. So, there exists a finite complex L” of dimension g(k)
such that L” =; L.

Let N be a regular neighborhood of L(G) in R¥®*! given by Lemma 1.
Then, it is easy to show that K =; N.

Now, let f: K—Int N C N be a PL-embedding which defines the simple
homotopy equivalence. Let W be a regular neighborhood of f(K) in Int N,
then (N — Int W; 0W, dN) is an h-cobordism of zero torsion. For it is
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routine to show that the inclusion maps dN — (N — Int W) and oW — (N —
Int W) are homotopy equivalences; and, furthermore, dW — (N — Int W) is
a simple homotopy equivalence by use of the excision theorem 20.3 in [Co,]
and the functorial property of G — Wh(G) (see [Co,, p. 40]).

Therefore, from the h-cobordism theorem it follows easily that N ~ W.
The proof of the theorem is complete. [

The author would like to thank R. D. Anderson and M. Colvin for their
interesting discussions, and the referee for his valuable suggestions.
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