WEAK q-RINGS WITH ZERO SINGULAR IDEAL

SAAD MOHAMED AND SURJEET SINGH¹

ABSTRACT. A ring R is called a (right) wq-ring if every right ideal not isomorphic to R_R is quasi-injective. The main result proved is the following: Let R be a ring with zero singular ideal, then R is a wq-ring if and only if either R is a q-ring, or $R = \begin{bmatrix} D & D \\ D & D \end{bmatrix}$ for some division ring D, or R is such that every right ideal not isomorphic to R_R is completely reducible.

Throughout this paper, the rings considered are with unity and every module is a unital right module. A ring R is called a (right) q-ring if every right ideal of R is quasi-injective [5]. Such rings and their dual concept have been studied by many authors. Recently Byrd [1] determined the structure of q-rings without imposing any finiteness conditions. In [8], the present authors initiated the study of those rings R whose right ideals not isomorphic to R_R are quasi-injective; such rings are called weak q-rings (in short wq-rings). The structure of wq-rings under some finiteness conditions was determined in [8]. In this paper we study wq-rings with zero right singular ideal, which need not satisfy any finiteness conditions. A characterization of such rings is given in Theorem (2.9). The structures of the right socle and the Jacobson radical of these rings are also determined.

- 1. Preliminaries. For definition and some properties of quasi-injective modules, we refer the reader to Johnson and Wong [6] (see also Faith [2]). For any module M_R , the smallest cardinal α such that any direct sum in M_R has at most α components is called the dimension of M (denoted by d(M)). A submodule N of a module M is called a complement submodule if N is a complement of some submodule K of M. The following two results are due to Miyashita [7]:
- (1.1) THEOREM. Any complement submodule of a quasi-injective module M is a summand of M.
- (1.2) THEOREM. A finite dimensional quasi-injective module is a direct sum of uniform modules.

Received by the editors August 29, 1978.

AMS (MOS) subject classifications (1970). Primary 16A52; Secondary 16A08, 16A66.

Key words and phrases. Quasi-injective module, singular submodule, dimension of a module, hereditary ring a-ring

¹This research was done while Surject Singh was visiting Kuwait University in July-August, 1978.

Ivanov [4] proved the following:

(1.3) LEMMA. Let A and B be right ideals of a q-ring R. If $A \cap B = 0$ then for any R-homomorphism $f: A \to B$, f(A) is semisimple (i.e., completely reducible).

On similar lines, the following can be proved:

(1.4) LEMMA. Let A and B be any modules such that for every essential submodule C of B, $A \oplus C$ is quasi-injective. Then for any homomorphism $f: A \to B$, f(A) is completely reducible.

The following is well known:

(1.5) LEMMA. Let A and B be any modules. If $A \oplus B$ is quasi-injective, then any monomorphism from A to B splits.

For any module M_R , Z(M) and \hat{M} will denote the singular submodule and the injective hull of M, respectively. It is well known that if a ring R has Z(R) = 0, then \hat{R} is a right self-injective ring of which R is a subring (see [2]).

For any right ideal A of a ring R with Z(R) = 0, let

$$A^* = \{ x \in R : \hat{R}x \subset A \}.$$

Then A^* is a right ideal of R contained in A. It is proved in [8, Lemma (1.1)] that A^* is a left ideal in \hat{R} and is a quasi-injective R-module; if in addition A is essential in R_R , then $A = A^*$ if and only if A is quasi-injective.

- 2. Rings with zero singular ideal. We start by the following general result.
- (2.1) LEMMA. Let A be a quasi-injective right ideal in a wq-ring R. If A contains a right regular element, then R is a q-ring.

PROOF. Let $a \in A$ be a right regular element. Then $R \simeq aR \subset A$. This implies that A is injective and \hat{R} is embedded in A. Let $R = B \oplus C$ where $B \simeq \hat{R}$. Then $B = B_1 \oplus B_2$ where $B_1 \simeq B$ and $B_2 \simeq \hat{C}$. If $B_2 \oplus C \simeq R$, then $B_2 \oplus C$ is quasi-injective. Since C embeds in B_2 , then Lemma (1.5) gives that C is injective. Hence R_R is injective and R is a q-ring. On the other hand, $B_2 \oplus C \simeq R$ implies that $R \simeq \hat{R} \oplus R$. This in turn implies that R contains an infinite direct sum $\Sigma \oplus R_i$ of copies of R. Since $\Sigma \oplus R_i \simeq R$, we get $\Sigma \oplus R_i$ is quasi-injective. Hence R_R is injective. This completes the proof.

The following is proved in [8, Theorem (2.7)].

(2.2) THEOREM. Let R be a ring such that Z(R) = 0. If R is a wq-ring, then either R is a right PID, or R is a strongly regular right self-injective ring (hence a q-ring) or R has nonzero right socle.

Since right PID's and q-rings are trivial cases of wq-rings, we will be mainly interested in those wq-rings which are not of these two types. As such, in all the lemmas to follow, R will be a wq-ring with Z(R) = 0 which is neither a right PID nor a q-ring. S will denote the right socle of R. We note that R has

no nontrivial central idempotents [8, Lemma (1.5)].

(2.3) LEMMA. S is essential in R_R .

PROOF. By Theorem (2.2), $S \neq 0$. Suppose S is not essential in R_R . Let C be a complement of S. We claim that $S \oplus C \ncong R$. Suppose not. Then S = gR for some nontrivial idempotent g. This implies that every minimal right ideal of R is projective, and hence

$$gR(1-g) = 0 = (1-g)Rg.$$

Thus g is a central idempotent, a contradiction. Therefore $S \oplus C \simeq R$. Hence $S \oplus C = (S \oplus C)^*$, a left ideal in \hat{R} . Let aR be a minimal right ideal of R. There exist $x \in \hat{R}$ such that axa = a. Then f = xa is an idempotent in R and $aR \simeq fR$. This proves that every minimal right ideal of R is projective. We proceed to show that C is a left ideal in \hat{R} . On the contrary, let $y \in \hat{R}$ be such that $yC \not\subset C$. However $yC \subset S \oplus C$. This defines a nonzero homomorphism $\eta: C \to S$. Since Im η is projective and completely reducible, we get $S \cap C \neq 0$. This is a contradiction. Hence $\hat{R}C \subset C$. As \hat{R} is a regular ring, C contains a nontrivial idempotent e. Then $C = eR \oplus (1 - e)C$. Since $Soc(C_R) = 0$, Lemma (1.4) gives

$$\text{Hom}(eR, (1-e)C) = 0 = \text{Hom}((1-e)C, eR).$$

Consequently,

$$(1-e)Ce = 0 = eR(1-e)C.$$

Now, $eR(S \oplus (1-e)C) = eRS + eR(1-e)C = 0$. So that

$$S \oplus (1-e)C \subset (1-e)R$$
.

Since $S \oplus C \subset {}'R$, we get $S \oplus (1-e)C \subset {}'(1-e)R$. Then Z(R)=0 implies eR(1-e)R=0. Also (1-e)Re=(1-e)Ce=0. Hence e is a central idempotent, a contradiction. This completes the proof.

- (2.4) COROLLARY. Let R be a wq-ring with Z(R) = 0 which is neither a right PID nor a q-ring. Then any minimal right ideal of R is projective and every homogeneous component of $Soc(R_R)$ contains nonzero idempotents.
- (2.5) PROPOSITION. If R is a wq-ring with Z(R) = 0, then R/R^* is a right PID.

PROOF. The result is obvious for a right PID or a q-ring. So assume that R is not one of these rings. By Lemma (2.3), $S = \operatorname{Soc}(R_R) \subset {}'R_R$. Then $S = S^* \subset R^*$, and hence $R^* \subset {}'R_R$. Let A/R^* be a nonzero right ideal of R^* . Then $A \supseteq R^*$ implies that $A \simeq R$. So that A = aR for some right regular element a of R. Since \hat{R} is a regular ring, a has a left inverse in \hat{R} . Hence $aR^* = aR \cap R^*$. Now

$$A/R^* = (aR + R^*)/R^* \simeq aR/(aR \cap R^*) = aR/aR^* \simeq R/R^*.$$

This proves that every nonzero right ideal of R/R^* is isomorphic to R/R^* . Hence R/R^* is a right PID.

(2.6) PROPOSITION. Let R be a wq-ring which is neither a right PID nor a q-ring. If d(R) > 2, then $d(R) = \infty$; in fact, no homogeneous component of $Soc(R_R)$ is finitely generated.

PROOF. Let H be a homogeneous component of S. By Corollary (2.4), there exists an idempotent $e \in H$ such that eR is a minimal right ideal. Suppose that $d(H) < \infty$. If $(1 - e)R \simeq R$, then $(1 - e)H = (1 - e)R \cap H \simeq H$. This contradicts $d(H) < \infty$. Hence $(1 - e)R \simeq R$, and (1 - e)R is quasi-injective. Note that $(1 - e)H \neq 0$, since otherwise H = eR and e becomes a central idempotent. Let e be the maximal essential extension of (1 - e)H in (1 - e)R. Then by Theorem (1.1), $(1 - e)R = B \oplus C$ for some right ideal e. Then e is quasi-injective and e0. By Theorem (1.2),

$$B = U_1 \oplus U_2 \oplus \cdots \oplus U_t$$

for finitely many uniform submodules U_i . Since d(R) > 2, $eR \oplus U_i \simeq R$, and so $eR \oplus U_i$ is quasi-injective. Then as eR is embeddable in U_i , $eR \simeq U_i$ by Lemma (1.5). This gives B = (1 - e)H, and so H is a summand of R. This is again a contradiction. Hence the result follows.

(2.7) LEMMA. If d(R) > 2 and if B is any right ideal of R such that $B \cap S$ is finitely generated, then $B \subset S$.

PROOF. Since $S \subset R_R$ by Lemma (2.3), $B \cap S \subset B$. Then $B \cap S$ is finitely generated implies $d(B) < \infty$. However $d(R) = \infty$ by the above proposition. Consequently B is quasi-injective, and by Theorem (1.2), $B = \sum_{i=1}^{l} \bigoplus U_i$, with each U_i uniform right ideal. Since each homogeneous component of S has infinite dimension by Proposition (2.6), we can find minimal right ideals A_i such that $A_i \cap U_i = 0$ and $A_i \simeq \operatorname{Soc}(U_i)$. Then $A_i \simeq U_i$ by the quasi-injectivity of $A_i \oplus U_i$. This proves that $B \subset S$.

(2.8) LEMMA. If d(R) > 2, then any right ideal A of R not isomorphic to R, is completely reducible.

PROOF. Let $a \in A$. By Lemma (2.1), $aR \simeq R$ and consequently aR is quasi-injective. We claim that every homogeneous component of $Soc(aR \cap S)$ is finitely generated. Suppose not. Then we get a direct sum

$$\sum_{i=1}^{\infty} \bigoplus A_i \oplus \sum_{i=1}^{\infty} \bigoplus B_i$$

of mutually isomorphic minimal right ideals A_i and B_i contained in aR. Let D be a complement submodule of $\Sigma \oplus A_i$ in aR containing $\Sigma \oplus B_i$. Then by Theorem (1.1), D is a summand of aR. Now $\Sigma \oplus A_i \oplus D$ is quasi-injective and $\Sigma \oplus A_i$ is embeddable in D; so by Lemma (1.5), $\Sigma \oplus A_i$ is isomorphic to a summand of D. Consequently $\Sigma \oplus A_i$ is finitely generated; a contradiction. Hence every homogeneous component of $Soc(aR \cap S)$ is finitely generated.

Now assume that aR is not completely reducible. Then by Lemma (2.7),

 $d(aR \cap S) = \infty$. Hence $Soc(aR \cap S)$ contains infinitely many homogeneous components. Since no homogeneous component of S is finitely generated by Proposition (2.6), we can find an infinite direct sum $\Sigma \oplus C_i$ of minimal right ideals such that $(\Sigma \oplus C_i) \cap aR = 0$ and $\Sigma \oplus C_i$ embeds in aR. However, this is a contradiction, since $aR \oplus \Sigma \oplus C_i$ is quasi-injective. Therefore aR is completely reducible. This completes the proof.

We now prove the main theorem.

- (2.9) THEOREM. Let R be a ring with Z(R) = 0. Then R is a wq-ring if and only if:
 - (1) R is a q-ring, or
 - (2) $R = \begin{bmatrix} D & D \\ 0 & D \end{bmatrix}$ for some division ring D, or
 - (3) Every right ideal of R, not isomorphic to R is completely reducible.

PROOF. Let R be a wq-ring. Suppose R is not a q-ring. If d(R) is finite, then by [8, Theorem (2.4)], R is of type (2), or R is a right PID and as such is of type (3). If d(R) is infinite, then by the above Lemma, R is of type (3). This proves the necessity. The sufficiency is obvious.

The following is a consequence of the above theorem and Corollary (2.4).

(2.10) THEOREM. If R is a wq-ring with Z(R) = 0 and if R is not a q-ring, then R is right hereditary.

The next proposition gives some information about the socle and the Jacobson radical of wq-ring R with Z(R) = 0.

(2.11) PROPOSITION. Let R be a wq-ring with Z(R) = 0 and let J be its Jacobson radical. Then $J^2 = 0$. Further if R is not a q-ring and if d(R) > 2, then every homogeneous component of $Soc(R_R)$ contains an infinite number of orthogonal idempotents.

PROOF. It is obvious from [8, Theorem (2.4)] that if R is a q-ring or $d(R) \le 2$, then $J^2 = 0$. So we assume that R is not a q-ring and d(R) > 2. Let $A = J \cap S$, then $A^2 = 0$. Write $S = A \oplus B$ for some right ideal B of R. Then B is a sum of minimal right ideals each of which is generated by an idempotent. Further by Corollary (2.4), every homogeneous component of S has nonzero intersection with S. Let S be a homogeneous component of S. If S is finitely generated, then S is not completely reducible. It follows by Theorem (2.9) that S is not completely reducible. It follows by Theorem (2.9) that S is not completely S is not S is not S in S in S is not S in S

$$R = eR \oplus C \oplus D.$$

Since SJ = 0, J = DJ and hence $(eR \oplus C) \cap J = 0$. Now

$$S = eR \oplus C \oplus (D \cap S) = B \oplus A.$$

This defines a monomorphism $\theta : eR \oplus C \to B$. It is clear that Im $\theta \subset H$ and $d(eR \oplus C) = 2d(H)$. This is a contradiction. Hence every homogeneous

component of B contains an infinite direct sum. Then $J \oplus B \simeq R$, and by Lemma (2.8), $J \subset S$. Hence J = A and $J^2 = 0$. This completes the proof.

Harada [3] proved that if for two modules M_1 and M_2 , $M_1 \oplus M_2$ is quasi-injective, then $M_1 \simeq M_2$ if and only if $\hat{M}_1 \simeq \hat{M}_2$. Using this and Theorem (2.9), one can easily prove the following:

(2.12) PROPOSITION. Let R be a wq-ring with Z(R) = 0. Then \hat{R} is a prime ring if and only if socle (R_R) is homogeneous.

We end this paper with the following remarks.

- (1) We are not aware of an example of a ring R with Z(R) = 0, in which every right ideal not isomorphic to R is completely reducible, but the ring itself is neither a right PID nor semisimple artinian.
- (2) Since a semiprime wq-ring has zero right singular ideal [8, Proposition (1.8)], the results on semiprime, and in particular prime, wq-rings proved in [8], are immediate consequences of results established above.

REFERENCES

- 1. K. A. Byrd, Right self-injective rings whose essential right ideals are two sided, Pacific J. Math. (to appear).
 - 2. C. Faith, Algebra. II, Springer-Verlag, New York, 1975.
 - 3. M. Harada, Note on quasi-injective modules, Osaka Math. J. 2 (1965), 351-356.
- 4. G. Ivanov, Non-local rings whose ideals are all quasi-injective, Bull. Austral. Math. Soc. 6 (1972), 45-52.
- 5. S. K. Jain, S. H. Mohamed and S. Singh, Rings in which every right ideal is quasi-injective, Pacific J. Math. 31 (1969), 73-79.
- 6. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.
 - 7. Y. Miyashita, On quasi-injective modules, J. Fac. Sci. Hokkaido Univ. 18 (1965), 158-187.
 - 8. S. Mohamed and S. Singh, Weak q-rings, Canad. J. Math. 29 (1977), 687-695.

DEPARTMENT OF MATHEMATICS, KUWAIT UNIVERSITY, KUWAIT

DEPARTMENT OF MATHEMATICS, GURU NANAK DEV UNIVERSITY, AMRITSAR, INDIA