
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 76, Number 1, August 1979

WEAK BRINGS WITH ZERO SINGULAR IDEAL

SAAD MOHAMED AND SURJEET SINGH1

Abstract. A ring R is called a (right) w^-ring if every right ideal not

isomorphic to RR is quasi-injective. The main result proved is the following:

Let R be a ring with zero singular ideal, then R is a M^-ring if and only if

either R is a ^-ring, or R = [§ £] for some division ring D, or R is such that

every right ideal not isomorphic to RR is completely reducible.

Throughout this paper, the rings considered are with unity and every

module is a unital right module. A ring R is called a (right) 9-ring if every

right ideal of R is quasi-injective [5]. Such rings and their dual concept have

been studied by many authors. Recently Byrd [1] determined the structure of

q-ríngs without imposing any finiteness conditions. In [8], the present authors

initiated the study of those rings R whose right ideals not isomorphic to RR

are quasi-injective; such rings are called weak ^-rings (in short wq-rings). The

structure of wg-rings under some finiteness conditions was determined in [8].

In this paper we study w^-rings with zero right singular ideal, which need not

satisfy any finiteness conditions. A characterization of such rings is given in

Theorem (2.9). The structures of the right socle and the Jacobson radical of

these rings are also determined.

1. Preliminaries. For definition and some properties of quasi-injective

modules, we refer the reader to Johnson and Wong [6] (see also Faith [2]).

For any module MR, the smallest cardinal a such that any direct sum in MR

has at most a components is called the dimension of M (denoted by d(M)). A

submodule N of a module M is called a complement submodule if N is a

complement of some submodule K of M. The following two results are due to

Miyashita [7]:

(1.1) Theorem. Any complement submodule of a quasi-injective module M is

a summand of M.

(1.2) Theorem. A finite dimensional quasi-injective module is a direct sum of

uniform modules.
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Ivanov [4] proved the following:

(1.3) Lemma. Let A and B be right ideals of a q-ring R. If A n B = 0 then

for any R-homomorphism f: A —» B, f(A) is semisimple (i.e., completely reduc-

ible).

On similar lines, the following can be proved:

(1.4) Lemma. Let A and B be any modules such that for every essential

submodule C of B, A © C is quasi-infective. Then for any homomorphism f:

A —» B,f(A) is completely reducible.

The following is well known:

(1.5) Lemma. Let A and B be any modules. If A © B is quasi-injective, then

any monomorphism from A to B splits.

For any module MR, Z(M) and M will denote the singular submodule and

the injective hull of M, respectively. It is well known that if a ring R has

Z(R) = 0, then R is a right self-injective ring of which R is a subring (see [2]).

For any right ideal A of a ring R with Z(R) = 0, let

A* = (x E R:Rx C A).

Then A* is a right ideal of R contained in A. It is proved in [8, Lemma (1.1)]

that A * is a left ideal in R and is a quasi-injective Ä-module; if in addition A

is essential in RR, then A = A* ii and only if A is quasi-injective.

2. Rings with zero singular ideal. We start by the following general result.

(2.1) Lemma. Let A be a quasi-injective right ideal in a wq-ring R. If A

contains a right regular element, then R is a q-ring.

Proof. Let a E A be a right regular element. Then R ~ aR c A. This

implies that A is injective and R is embedded in A. Let R = B © C where

B cs R. Then B = Bx® B2 where Bx ~ B and B2 ca C. If B2 © C x. R, then

Z?2 © C is quasi-injective. Since C embeds in ¿?2> tnen Lemma (1.5) gives that

C is injective. Hence RR is injective and R is a <?-ring. On the other hand,

B2(& C ^ R implies that R ~ R ® R. This in turn implies that R contains

an infinite direct sum 2 0 R¡ of copies of R. Since S 0 ^ ä Ä, we get

S 0 R¿ is quasi-injective. Hence /?Ä is injective. This completes the proof.

The following is proved in [8, Theorem (2.7)].

(2.2) Theorem. Let R be a ring such that Z(R) = 0. If R is a wq-ring, then

either R is a right PID, or R is a strongly regular right self-injective ring (hence

a q-ring) or R has nonzero right socle.

Since right PID's and ^-rings are trivial cases of w^-rings, we will be mainly

interested in those w^-rings which are not of these two types. As such, in all

the lemmas to follow, R will be a w^-ring with Z(R) = 0 which is neither a

right PID nor a ^-ring. S will denote the right socle of R. We note that R has
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no non trivial central idempotents [8, Lemma (1.5)].

(2.3) Lemma. S is essential in RR.

Proof. By Theorem (2.2), S ¥= 0. Suppose S is not essential in RR. Let C be

a complement of S. We claim that S © C ge R. Suppose not. Then S = gR

for some nontrivial idempotent g. This implies that every minimal right ideal

of R is projective, and hence

gR(l - g) = 0 = (1 - g)Rg.

Thus g is a central idempotent, a contradiction. Therefore S (B C sz R.

Hence S © C = (5 © C)*, a left ideal in R. Let a/? be a minimal right ideal

of R. There exist x G R such that axa = a. Then/ = xa is an idempotent in

R and aR^fR. This proves that every minimal right ideal of R is projective.

We proceed to show that C is a left ideal in R. On the contrary, let v G R be

such that _yC £ C. However ^C c 5 © C. This defines a nonzero homomor-

phism tj: C -» S. Since Im tj is projective and completely reducible, we get

S n C ¥= 0. This is a contradiction. Hence AC c C. As Ä is a regular ring, C

contains a nontrivial idempotent e\ Then C = e\R © (1 - e)C. Since Soc(CÄ)

= 0, Lemma (1.4) gives

Hom(eR, (1 - e)C) - 0- Hom((l - e)C,eJR).

Consequently,

(1 - É>)Ce = 0 = e/?(l - e)C.

Now, eÄ(5 © (1 - e)C) = eRS + eR(\ - e)C = 0. So that

S ©(1 - e)C c(l - e)Ä.

Since S © C c 'Ä, we get S © (1 - e)C c '(1 - *)*• Then Z(R) = 0 im-

plies eR(\ — e)R = 0. Also (1 - e)Re = (1 - e)Ce = 0. Hence e is a central

idempotent, a contradiction. This completes the proof.

(2.4) Corollary. Let R be a wq-ring with Z(R) = 0 which is neither a right

PID nor a q-ring. Then any minimal right ideal of R is projective and every

homogeneous component of Soc(RR) contains nonzero idempotents.

(2.5) Proposition. // R is a wq-ring with Z(R) = 0, then R/R* is a right

PID.

Proof. The result is obvious for a right PID or a q-ring. So assume that R

is not one of these rings. By Lemma (2.3), S = Soc(RR) c 'RR. Then S = S*

C R*, and hence R* c RR. Let A/R* be a nonzero right ideal of R*. Then

A ^ R* implies that A ^ R. So that A = aR for some right regular element

a of R. Since R is a regular ring, a has a left inverse in R. Hence aR* = aR

n R*. Now

A/R* = (a/? + /?*)//?* ~ aR/ (aR n Ä*) = aR/aR* es Ä/Ä*.

This proves that every nonzero right ideal of R/R* is isomorphic to R/R*.

Hence Ä/Ä* is a right PID.
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(2.6) Proposition. Let R be a wq-ring which is neither a right PID nor a

q-ring. If d(R) > 2, then d(R) = oo; in fact, no homogeneous component of

Soc(RR) is finitely generated.

Proof. Let H be a homogeneous component of S. By Corollary (2.4), there

exists an idempotent e E H such that eR is a minimal right ideal. Suppose

that d(H) < oo. If (1 - e)R at R, then (1 - e)H = (1 - e)R n H ~ H.

This contradicts d(H) < oo. Hence (1 - e)R as R, and (1 - e)R is quasi-in-

jective. Note that (1 - e)H ¥= 0, since otherwise H = eR and e becomes a

central idempotent. Let B be the maximal essential extension of (1 — e)H in

(1 - e)R. Then by Theorem (1.1), (1 - e)R = B © C for some right ideal C.

Then B is quasi-injective and d(B) < oo. By Theorem (1.2),

b - ux © u2 © • • • © u,

for finitely many uniform submodules U¡. Since d(R) > 2, eR © U¡ » R, and

so eR © £/(- is quasi-injective. Then as eR is embeddable in C/„ eÄ sí C, by

Lemma (1.5). This gives B = (1 — e)//, and so H is a summand of R. This is

again a contradiction. Hence the result follows.

(2.7) Lemma. Ifd(R) > 2 and if B is any right ideal of R such that B n S is

finitely generated, then B c S.

Proof. Since S c 'RR by Lemma (2.3), B n S c'B. Then B n S is

finitely generated implies ¿/(5) < oo. However ¿(Ä) = oo by the above

proposition. Consequently B is quasi-injective, and by Theorem (1.2), B =

2'_, 0 U,, with each Í7, uniform right ideal. Since each homogeneous

component of S has infinite dimension by Proposition (2.6), we can find

minimal right ideals A¡ such that A¡ n í/, = 0 and A¡ s¿ Soc( U¡). Then j4,. a:

t/(. by the quasi-injectivity of A¡ © {/,. This proves that B c S.

(2.8) Lemma. Ifd(R) > 2, then any right ideal A of R not isomorphic to R, is

completely reducible.

Proof. Let a E A. By Lemma (2.1), aR ^ R and consequently aR is

quasi-injective. We claim that every homogeneous component of Soc(aR n

S) is finitely generated. Suppose not. Then we get a direct sum

S 0^,0 f ©5,.¿-i i=i
of mutually isomorphic minimal right ideals A¡ and B¡ contained in aR. Let D

be a complement submodule of 2 © A¡ in a/? containing 2 © 5,-. Then by

Theorem (1.1), D is a summand of aR. Now 2 © A¡© D is quasi-injective

and 2 © A¡ is embeddable in D; so by Lemma (1.5), 2 © A¡ is isomorphic

to a summand of D. Consequently 2 © A¡ is finitely generated; a contradic-

tion. Hence every homogeneous component of Soc(aR n S) is finitely gener-

ated.

Now assume that aR is not completely reducible. Then by Lemma (2.7),
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d(aR n S) = co. Hence Soc(aR n S) contains infinitely many homoge-

neous components. Since no homogeneous component of S is finitely gener-

ated by Proposition (2.6), we can find an infinite direct sum 2 0 C, of

minimal right ideals such that (2 0 C¡) n aR = 0 and 2 © C, embeds in

aR. However, this is a contradiction, since aR © 2 0 C, is quasi-injective.

Therefore aÄ is completely reducible. This completes the proof.

We now prove the main theorem.

(2.9) Theorem. Let R be a ring with Z(R) = 0. Then R is a wq-ring if and

only if:

(1) R is a q-ring, or

(2) R = [o %]for some division ring D, or

(3) Every right ideal of R, not isomorphic to R is completely reducible.

Proof. Let R be a wa-ring. Suppose R is not a a-ring. If d(R) is finite, then

by [8, Theorem (2.4)], R is of type (2), or R is a right PID and as such is of

type (3). If d(R) is infinite, then by the above Lemma, R is of type (3). This

proves the necessity. The sufficiency is obvious.

The following is a consequence of the above theorem and Corollary (2.4).

(2.10) Theorem. // R is a wq-ring with Z(R) = 0 and if R is not a q-ring,

then R is right hereditary.

The next proposition gives some information about the socle and the

Jacobson radical of wa-ring R with Z(R) = 0.

(2.11) Proposition. Let R be a wq-ring with Z(R) = 0 and let J be its

Jacobson radical. Then J2 = 0. Further if R is not a q-ring and if d(R) > 2,

then every homogeneous component of Soc(RR) contains an infinite number of

orthogonal idempotents.

Proof. It is obvious from [8, Theorem (2.4)] that if R is a a-ring or

d(R) < 2, then J2 = 0. So we assume that R is not a a-ring and d(R) > 2.

Let A = J n S, then A2 = 0. Write S = A © B for some right ideal B of R.

Then B is a sum of minimal right ideals each of which is generated by an

idempotent. Further by Corollary (2.4), every homogeneous component of S

has nonzero intersection with B. Let H be a homogeneous component of B. If

H is finitely generated, then H = eR for some idempoent e G R. Then

(1 - e)R is not completely reducible. It follows by Theorem (2.9) that

(1 - e)R =¿ R. Consequently (1 - e)R = C © D with C as H = eR and D

~(1 - e)R. Then

R = eR © C © D.

Since SJ = 0, y = DJ and hence (eR © C) n J = 0. Now

S = eR ® C ® (D n S) = B ® A.

This defines a monomorphism 0: eR © C -* B. It is clear that Im 9 c H and

d(eR © C) = 2d(H). This is a contradiction.  Hence every homogeneous
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component of B contains an infinite direct sum. Then J © B ^ R, and by

Lemma (2.8), J c S. Hence J = A and J2 = 0. This completes the proof.

Harada [3] proved that if for two modules M, and M2, Mx © M2 is

quasi-injective, then Mx ^ M2 if and only if Mx a M2. Using this and

Theorem (2.9), one can easily prove the following:

(2.12) Proposition. Let R be a wq-ring with Z(R) = 0. Then R is a prime

ring if and only if socle (RR) is homogeneous.

We end this paper with the following remarks.

(1) We are not aware of an example of a ring R with Z(R) = 0, in which

every right ideal not isomorphic to R is completely reducible, but the ring

itself is neither a right PID nor semisimple artinian.

(2) Since a semiprime wq-ring has zero right singular ideal [8, Proposition

(1.8)], the results on semiprime, and in particular prime, w^-rings proved in

[8], are immediate consequences of results established above.
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