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GROUP ACTIONS ON Q-F-RINGS

J. L. PASCAUD AND J. VALETTE

Abstract. Let B be a ring, G a finite group of automorphisms acting on B

and Bc the fixed subring of B. We give an example of a S which is

quasi-Frobenius (Q-F) such that B c is not quasi-Frobenius.

S. Jondrup [3] claims that if card G is a unit in B and if B is self-injective

then BG is self-injective. J. Fisher and J. Osterburg [2] use this assertion to

prove that if B is quasi-Frobenius then BG is quasi-Frobenius. However we

show that this result fails.

Suppose that A is a commutative local artinian ring with Jacobson radical

R and call E the injective hull of the simple /I-module S = A/R. E is finitely

generated and faithful [5, théorème 2, p. 97 and corollaire 6, p. 99]. B denotes

the ring constructed on the abelian group A X E with the multiplication

(a, e)(a', e') = (aa', ae' + a'e).

Lemma. B is a commutative local quasi-Frobenius ring.

It is clear that B is commutative local artinian with radical R X E and that

S' = O X S is a simple ideal of B essential in the ideal O X E. O X E is

essential in B, since for each a E A - [o] there exists e' E E such that

(o, e')(a, e) = (o, ae') is nonzero, because E is faithful. Thus S' is essential in

B.

Then for each / E HomB(S", B) — [o], f(S') and S' are equal so that

HomB(5", B) is isomorphic to S'. By [1, Theorem 58.6, p. 396], B is quasi-

Frobenius.    □

Proposition. (1) There exists a quasi-Frobenius ring B and a finite group G

of automorphisms of B with card G invertible in B such that BG is not

quasi- Frobenius.

(2) It gives also an example of a quasi-Frobenius ring C with an idempotent e

such that eCe is not quasi-Frobenius.

(1) Consider a field K of characteristic different from 2 and define on K3 a

ring A by the multiplication

(a, b, c)(a', b', c') = (aa', ab' + a'b, ac' + a'c).

A is a commutative local artinian ring whose socle has length 2. Thus A is not

quasi-Frobenius.
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Define B as before, (a, e) h-> (a, — e) is an automorphism of B of order 2

with fixed subring A.

(2) As in [2] consider the "twisted" group ring C defined on the set of all

formal sums 2geC bgg with bg E B, by the multiplication g- r = rgg; e =

(2g6C g)/card G is an idempotent of C and eCe is isomorphic to BG = A

[2]. But it is easy to adapt the classical demonstration of injectivity of group

rings [5, pp. 103-104] to prove that C is quasi-Frobenius.   □
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