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A SURJECTTVE CHARACTERIZATION OF

DUGUNDJI SPACES

BURKHARD HOFFMANN1

Abstract. It is shown that the class of Dugundji spaces coincides with the

class of continuous images of the generalized Cantor set by maps satisfying

the zero-dimensional lifting property. It follows that each point in a

Dugundji space has a neighbourhood base of Dugundji spaces.

Introduction. In [6] Pelczyñski introduced the classes of Dugundji spaces

and Milutin spaces. The fact that these classes coincide for compact spaces of

weight not exceeding wx was established in the joint paper of Ditor and

Haydon [2]. A major breakthrough in the characterization of Dugundji spaces

and Milutin spaces was achieved by R. Haydon [4] showing that every

Dugundji space is a Milutin space and that the notions of Dugundji space

and absolute extensor for compact zero-dimensional spaces (AE(O-dim)) are

equivalent. Recently in his paper [7] Shchepin gave another characterization

of the class of Dugundji spaces and produced an example of a zero-dimen-

sional space of weight w2 that is a non-Dugundji Milutin space.

In this paper we shall consider continuous surjections satisfying the zero-di-

mensional lifting property (z.d.l.p.) which will lead to a new characterization

of Dugundji spaces. At the same time our method yields topological informa-

tion about surjective maps allowing a regular averaging operator (r.a.o.) and

about the local structure of Dugundji spaces.

In his monograph Pelczyñski asked for a topological characterization of

continuous surjections of compact metrizable spaces that allow an r.a.o. [6,

Problem 3, p. 65]. An answer was given by S. Z. Ditor [1, Theorem 3.4] in

terms of existence of lower semicontinuous set-valued sections. Here our

solution to Pekzyñski's problem is of a neater, purely topological nature just

involving continuous maps and compact spaces (see Corollary 1).

A locally Dugundji space is known to be a Dugundji space [6, Proposition

6.3] and Pelczyñski raised the question whether the converse of this statement

holds true [6, Problem 18, p. 70]. The corollary to our main result entails that

the answer to this problem is in the affirmative.

Throughout this paper our terminology is standard; all definitions and
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notations can be found in [4] or [6]. D will denote the two point discrete space

{0, 1} and I the closed unit interval with the usual topology.

Finally we record the following terminology. For a compact space S we

write C(S) for the space of continuous real-valued functions on S equipped

with the topology induced by the supremum norm. The dual M(S) is, as

usual, identified with the set of signed, regular Borel measures on S and

M(S) always carries the o(M(S), QS^-topology. For s E S the point

measure at s is denoted by 8S.

A continuous surjection \p: S -> F of compact spaces S, T is said to allow a

regular averaging operator or r.a.o., if there is a positive operator u: C(S) -»

C(T) such that u(f ° 4>) = f for all / e C(T). Note that the operator u is

necessarily of norm 1. A Milutin space is defined as the continuous image of

some generalized Cantor set D4 by a map allowing an r.a.o.

Zero-dimensional lifting property. Before introducing a new piece of

terminology let us recall a selection theorem of E. Michael [5, Theorem 2]

which we shall use as a basic tool.

Lemma I. If R is a zero-dimensional paracompact space and S is a complete

metric space, then every lower semicontinuous function from R into the closed,

nonempty subsets of S admits a continuous selection.

In this paper we are interested in lower semicontinuous functions which

arise by assigning to a measure its support. This result appears as Proposition

3.1 in [1] which, for convenience of the reader, we record here again.

Lemma 2. Let S be a compact space. Then the mapping from M(S) to the

closed subsets of S which takes a measure into its support is lower semicontinu-

ous.

Finally the following notation will play a central role here.

Definition. Let S, T be compact spaces and \j/: S—> T a continuous

surjection. Then \¡> is said to satisfy the zero-dimensional lifting property or

z.d.l.p. if for any zero-dimensional compact space R and for any continuous

map <b: R -» F there exists a continuous map f?: R —» S such that the diagram

commutes, i.e., \p ° 9 = <i>.

R

Let us start the investigation of z.d.l.p. by establishing some elementary

observations.

We notice that the notion of z.d.l.p. is stable under taking finite composi-

tions, and lifting a given map coordinatewise immediately yields that a



SURJECTIVE CHARACTERIZATION OF DUGUNDJI SPACES 153

product map i>flW n{Sfl: a G A) -*H{Tm: a £ A), (sa)a£A "-»OWi»)).^.

satisfies the z.d.l.p., if each coordinate map \f/a: Sa -» Ta (a G A) has this

property.

Let us agree to call a property of a surjection \p: S -* T hereditary if for

each closed subset T0 of T, the induced restriction

^-1(F0):^-1(F0)^F0

has the same property.

Evidently, satisfying the z.d.l.p. is a hereditary property. Slightly less

obvious is the fact that allowing an r.a.o. is a hereditary property too. To this

end let us recall a characterization of r.a.o. which is a straightforward

consequence of Proposition 4.1 of Pekzyñski's monograph [6] and seems to

be more suitable for our topological framework than the standard one given

in the introduction.

A continuous surjection \p: S -* T of compact spaces S, T admits an r.a.o.

if and only if there exists a continuous map p of T into M(S) taking each

t £ T into a probability measure ¡u, such that the support of p, is contained in

the fibre ̂ "'(i).
Now suppose we are given a continuous surjection \p: S -> F allowing an

r.a.o. and a closed subset F0 of F. Then for all t G T0 the probability measure

p, is supported by the inverse image >^_1(F0) and therefore can be canoni-

cally identified with a probability measure on \{/~x(TQ). Utilizing Pekzyñski's

result again yields that allowing an r.a.o. is a hereditary property.

An application of Lemmas 1 and 2 enables us to relate maps satisfying the

z.d.l.p. with maps allowing an r.a.o.

Proposition 1. Let S, T be compact metrizable spaces and \p: S -» T a

continuous surjection allowing an r.a.o. u: C(S) —> C(T). Then \p satisfies the

z.d.l.p.

Proof. Since u is an r.a.o. for \p, the continuous map that assigns to each

t G T the probability measure 8, ° u is such that the support of 8, ° u is

contained in the fibre 4>~x(t) [6, Proposition 4.1]. Now let us assume we are

given a zero-dimensional compact space R and a continuous map <p: 7? —> F.

By Lemma 2 the set-valued function that takes each r G R into the support

of the probability measure 8^r) ° u satisfies the hypotheses of Lemma 1 and

so it admits a continuous selection 0: R-^> S. In particular, 0(r) is an element

of the fibre ^~x(<p(r)) for all r E R, i.e., <f> = «f/ ° 0.   □

In order to infer that the restriction to metrizability in the preceding

proposition is indeed essential we follow Shchepin's terminology and denote

by expn(S) the space of all nonempty subsets of S of cardinality < «

furnished with the finite topology (see [7] for more details). In passing we

mention that the space exp2(D"2) was exhibited in [7] as the first known

example of a Milutin space that is not a Dugundji space. The fact that for any

set A the space exp2(LV*) is a Milutin space is an easy consequence of the
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following observation. For a compact space S the natural surjection S X 5 -»

exp2(5), (x, y) —» [x, y), is continuous and allows an r.a.o., which is given by

the continuous map taking each element {x,y] of exp2(5) into the probabil-

ity measure {-(8M + 8{yx)).

Remark 1. The natural surjection <f<: D"1 X D"'-> exp2(DU|), (x,y)->

{x, y), allows an r.a.o., but does not satisfy the z.d.l.p.

Proof. By the above mentioned result it remains to verify the second part

of the statement. Let us suppose the contrary. Since exp2(D"') is a zero-di-

mensional compact space, the z.d.l.p. of ^ entails that i// is a retraction.

Composing a continuous section for \p with the canonical projection DW| X

D"1 -» D"' onto the first coordinate yields a continuous selection a: exp2(D"1)

-h>D"', i.e., a({x,y}) E {x,y} for all elements {x,y} of exp2(D"')- By a

theorem of G. S. Young [8, Theorem 3] the existence of such a continuous

selection implies that DW| admits a linear order such that the order topology

coincides with the original topology. But this is impossible, since a linearly

ordered dyadic space is known to be homeomorphic to a subset of the real

line (see [3, Corollary 7]) and thus, in particular, it is metrizable.   □

Although the proof of Young's theorem cited above is not included in her

essay, we refrain from giving the rather lengthy verification showing explicitly

that the existence of a continuous selection o: exp2(D"')-» D"' induces a

contradiction. Moreover, the reader who is familiar with the techniques

developed by Shchepin can find an implicit mention of this result on p. 164 of

[7]-
Let us now proceed with the investigation of the interrelationship of z.d.l.p.

and r.a.o. A converse of Proposition 1 can be proved without any restriction

to metrizability.

Proposition 2. Let S, T be compact spaces and »p: S —» T a continuous

surjection satisfying the z.d.l.p. Then \p allows an r.a.o.

Proof. We may assume F to be a subset of some Ia. Since Ia is a Milutin

space [6, Theorem 5.6] there exists some continuous surjection <j>: D3 -» Ia

allowing an r.a.o. Let R be the compact, zero-dimensional space <#»~'(F) and,

for simplicity, write </>: 7? -» F for the restricted map as well. Since allowing

an r.a.o. is a hereditary property we deduce that <j>: 7? —> F admits an r.a.o. u,

say. By hypothesis there exists a continuous lifting 9: R -» S such that

\p » 9 = <¡>. A simple calculation shows that the operator v: C(S)-» C(T),

defined by v(f) := u(f ° 9) for all/ E C(S), is indeed an r.a.o. for \p.   □

Combining Propositions 1 and 2 yields the following equivalence.

Corollary 1. Let \p: S —* T be a continuous surjection of compact metriz-

able spaces. Then ■// allows an r.a.o. if and only if ip satisfies the z.d.l.p.

The main result. As in the definition of a Milutin space we restrict our

attention to continuous surjections satisfying the z.d.l.p.  and having as
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domain space some LV*. Obviously, Proposition 2 shows that the class of

spaces which occur as images of such maps is contained in the class of

Milutin spaces. For further investigation it seems convenient to introduce the

following notation.

We agree to call a compact space S a Michael space if there exists a

continuous surjection from some D4 onto S satisfying the z.d.l.p.

Proposition 1 and the fact that a compact metrizable space is a Milutin

space (see [6, Theorem 5.6]) entail that the class of Michael spaces contains

all compact metrizable spaces. The observations following the definition of

the z.d.l.p. show that the class of Michael spaces is closed under taking

arbitrary products and images by continuous maps satisfying the z.d.l.p. We

have just proved the following.

Lemma 3. Any image of an arbitrary product of compact metrizable spaces by

a continuous map satisfying the z.d.l.p. is a Michael space.

Theorem. The class of Michael spaces coincides with the class of Dugundji

spaces.

Proof. By Haydon's result [4] it is enough to show the equivalence of the

terms "AE(O-dim)" and "Michael space".

So let us assume that I is a Michael space and let \j¿: D4 —» X be a

continuous surjection satisfying the z.d.l.p. Suppose we are given a compact,

zero-dimensional space F, a closed subspace S of T and a continuous map <j>:

S -» X. By hypothesis there exists a continuous lifting 0: S —» D4 such that

\j/ ° 0 = <j>. Certainly, D is an AE(O-dim) and continuously extending maps

coordinatewise immediately yields that D4 is an AE(O-dim) too. (Alterna-

tively, recall that a product of compact metrizable spaces is a Dugundji space

[6, Proposition 6.5] or, equivalently, by Haydon's characterization [4] an

AE(O-dim).) Hence there is a continuous extension 9: T^Tt4 and the

restriction of 9 to S coincides with 0. Consequently, ^ ° 0 is a continuous

extension of <b.

Conversely, let X be an AE(O-dim) which we may assume to be a subspace

of some Ia. By Lemma 3 there exists some continuous surjection \p: D* —» Ia

satisfying the z.d.l.p. Let S be the closed subspace \p~x(X) of Dfi and <¡>:

S -» X the restriction of \p to S. Since satisfying the z.d.l.p. is a hereditary

property, the restriction <¡> of tp satisfies the z.d.l.p. too. By hypothesis </> allows

a continuous extension <£: DB -> X and, obviously, <j> preserves the z.d.l.p.

This shows that A is a Michael space.   □

Remark 2. Following up the observations of Remark 1 it seems interesting

to notice that although the natural surjection \p: DW| X D"1 —> exp2(D'',|) does

not satisfy the z.d.l.p. there exists a continuous surjection D"1 —» exp2(DW|)

satisfying the z.d.l.p. For the map uV allows an r.a.o. and so exp2(D"') is a

Milutin space of weight wx and hence by the result of Ditor and Haydon [2]
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quoted in the introduction a Dugundji space or, equivalently, by our theorem

a Michael space.

Our surjective characterization of Dugundji spaces yields as a corollary a

positive answer to Problem 18 of Pelczyñski's book [6].

Corollary 2. If S is a Dugundji space and T a closed Gs-set in S, then T is

a Dugundji space. In particular, each point of S has a neighbourhood base of

Dugundji spaces.

Proof. If S is metrizable the statement is trivial. So let us assume there

exists an uncountable set A and a continuous surjection \p: D4 -» S satisfying

the z.d.l.p. The inverse image \¡/~\T) is a closed Gä-set in D4 which is known

to be homeomorphic to D4 [3, Theorem 6]. The restriction of \p to \p~x(T)

maps continuously onto T and inherits the z.d.l.p. from \p.   □
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