THE MILNOR SIGNATURES OF COMPOUND KNOTS

C. KEARTON

ABSTRACT. The Milnor signatures of a classical knot are related to those of its companions.

1. We shall work throughout in the smooth or piecewise-linear category. A knot k is a circle S^1 embedded in the 3-sphere S^3 . A regular neighbourhood V of k is a solid torus. A longitude of ∂V is a circle embedded in ∂V which is homologous to k in V, and null-homologous in the closed complement of V. We assume that all knots and longitudes are oriented.

Let T be a solid torus unknotted in S^3 and containing a knot l^* , and let f be a faithful map from T onto V (that is, a homeomorphism which takes a longitude of ∂T onto a longitude of ∂V). If l^* represents $n \in \mathbb{Z} = H_1(T)$, then $l = f(l^*)$ is homologous to nk in V. Proofs will be presented as though n were positive, but with trivial adjustments in notation they are valid for all n.

Let $\Delta_l(t)$ be the Alexander polynomial of the knot l, and $\Delta_k(t)$, $\Delta_{l^{\bullet}}(t)$ those of k, l^* respectively. It is a result of Seifert [S] that $\Delta_l(t) = \Delta_k(t^n) \cdot \Delta_{l^{\bullet}}(t)$.

If p(t) is a symmetric, quadratic factor of $\Delta_k(t)$, irreducible over the real numbers, then we can write p(t) in the form $t^{-1} - 2\cos\theta + t$, $0 < \theta < \pi$. Milnor $[\mathbf{M}_1]$ has defined a signature $\sigma_{\theta}(k)$ which is an invariant of k. Let $p(t^n) = p_1(t) \cdot \cdot \cdot p_n(t)$, where each $p_r(t)$ is symmetric, quadratic and irreducible over the real numbers, and let $\exp(i\theta_r)$ be the root of $p_r(t)$ which is also an nth root of $\exp(i\theta)$, where $0 < |\theta_r| < \pi$.

THEOREM. $\sigma_{|\theta_r|}(l) = \sigma_{|\theta_r|}(l^*) + \sigma_{\theta}(k) \operatorname{sign}(n \sin \theta_r)$, where $\sigma_{|\theta_r|}(l^*) = 0$ if $\exp(i\theta_r)$ is not a root of $\Delta_{l^*}(t)$.

If $\exp(i\varphi)$ is a root of $\Delta_{l^*}(t)$ but not of $\Delta_k(t^n)$, then $\sigma_{\varphi}(l) = \sigma_{\varphi}(l^*)$.

COROLLARY.

$$\sigma(l) = \sigma(l^*)$$
 if n is even,
= $\sigma(l^*) + \sigma(k)$ if n is odd.

Here $\sigma(k)$ denotes the signature of k, and is just the sum over all θ of $\sigma_{\theta}(k)$. The latter result is due to Shinohara [Sh].

2. Let K be the closed complement in S^3 of the solid torus V, and let \tilde{K} be the infinite cyclic cover of K corresponding to the kernel of the Hurewicz

Received by the editors April 24, 1978.

AMS (MOS) subject classifications (1970). Primary 55A25; Secondary 55A10, 55C05. Key words and phrases. Knot, Milnor signature.

158 C. KEARTON

map $\pi_1(K) \to H_1(K) \cong (t:)$. Then $H_1(\tilde{K})$ is a finitely-generated module over $\Lambda = \mathbf{Z}[t, t^{-1}]$, and there is a Blanchfield duality pairing

$$\langle , \rangle : H_1(\tilde{K}) \times H_1(\tilde{K}) \to \Lambda_0/\Lambda,$$

where Λ_0 is the field of fractions of Λ . This pairing is Hermitian with respect to the conjugation defined by $t \mapsto t^{-1}$. It is also nonsingular.

Set $\Gamma = \mathbb{R}[t, t^{-1}]$, and pass to real coefficients: then we obtain a pairing

$$\langle , \rangle : H_1(\tilde{K}; \mathbf{R}) \times H_1(\tilde{K}; \mathbf{R}) \to \Gamma_0/\Gamma.$$

Let p(t) be a prime in Γ dividing $\Delta_k(t)$; and let V_p denote the p(t)-primary component of $H_1(\tilde{K}; \mathbf{R})$. As in $[\mathbf{K}]$, V_p is orthogonal to V_q unless $(p(t)) = (q(t^{-1}))$. Moreover, if $p(t) = p(t^{-1})$, then V_p can be written as an orthogonal direct sum $V_p^1 \oplus \cdots \oplus V_p^m$, with V_p^r a free module over $\Gamma/(p^r)$. Let (x) denote the image in $H_p^r = V_p^r/pV_p^r$ of x in V_p^r ; if $x,y \in V_p^r$, then we can define $[(x), (y)]_p^r = \langle p(t)^{r-1}x, y \rangle$.

Let $\varphi: \Gamma \to \Gamma/(p)$ be the quotient map; then defining $((x), (y))_p^r$ to be $\varphi(z)$, where $[(x), (y)]_p^r = z/p$, makes H_p^r into an Hermitian space over the field $\Gamma/(p) \cong \mathbb{C}$. Conjugation coincides with complex conjugation, as the roots of p(t) lie on the complex unit circle. Let $\sigma_p^r(k)$ be the signature of the corresponding quadratic space, and let $\sigma_p(k)$ be the sum over odd r of the $\sigma_p^r(k)$.

It is shown in [K] that $\sigma_p(k) = \sigma_{\theta}(k)$, where $p(t) = t^{-1} - 2\cos\theta + t$, $0 < \theta < \pi$.

In passing, note that $\sigma_p(k)$ is an invariant of the cobordism class of k (see $[\mathbf{M_1}]$); $\sigma_p^r(k)$ is an invariant of k, but not of its cobordism class $[\mathbf{L}]$. As Milnor points out $[\mathbf{M_2}]$, for r even the corresponding quadratic space is hyperbolic, and so $\sigma_{\theta}^r(k) = 0$.

3. Let N be a regular neighbourhood in T of l^* , L^* the closed complement of N in S^3 , L' the closed complement of f(N) in V, and L the closed complement of f(N) in S^3 . Then $L = L' \cup K$, and $L' \cap K = \partial V$. Passing to the infinite cyclic cover of L, $\tilde{L} = \tilde{L}' \cup \tilde{K}_1 \cup \cdots \cup \tilde{K}_n$, where the \tilde{K}_r are disjoint copies of \tilde{K} , and $\tilde{L}' \cap \tilde{K}_r \cong S^1 \times \mathbb{R}$. We can number the \tilde{K}_r so that the action of (t:) on \tilde{L} is given by $t\tilde{K}_r = \tilde{K}_{r+1}$, working modulo n.

It is implicit in the work of Seifert [S] that $H_1(\tilde{L})$ splits as a direct sum of Λ -modules, $H_1(\tilde{L}^*) \oplus H_1(\tilde{K}_1 \cup \cdots \cup \tilde{K}_n)$. Furthermore, if M(t) is a presentation matrix for $H_1(\tilde{K})$, then $M(t^n)$ is a presentation matrix for $H_1(\tilde{K}_1 \cup \cdots \cup \tilde{K}_n)$: this too is easily deduced from [S; p. 32].

From the definition of the Blanchfield duality pairing [B], it is clear that the direct sum above is orthogonal, and that $H_1(\tilde{K}_1 \cup \cdots \cup \tilde{K}_n)$ splits as an orthogonal direct sum of Z-modules $H_1(\tilde{K}_1) \oplus \cdots \oplus H_1(\tilde{K}_n)$.

4. Let $p(t) = t^{-1} - 2\cos\theta + t$, $0 < \theta < \pi$, be an irreducible factor of $\Delta_k(t)$, and let $p(t^n) = p_1(t) \cdot \cdot \cdot p_n(t)$ where $p_r(t) = t^{-1} - 2\cos\theta_r + t$, $0 < |\theta_r| < \pi$. Let $\tau = \exp(i\theta)$, and let $\tau_r = \exp(i\theta_r)$ be the root of $p_r(t)$ which is also an *n*th root of τ . Write $p'(t) = p(t^n)/p_r(t)$.

Recall that V_p is the p(t)-primary component of $H_1(\tilde{K}; \mathbb{R})$. If we identify $H_1(\tilde{K}; \mathbf{R})$ with $H_1(\tilde{K}_1; \mathbf{R}) \subset H_1(\tilde{K}_1 \cup \cdots \cup \tilde{K}_n; \mathbf{R})$, as a vector space, then clearly $(p'(t))^N V_p$ is contained in V_{p_r} , the $p_r(t)$ -primary component of $H_1(\tilde{K}_1)$ $\cup \cdots \cup \tilde{K}_n$; **R**), for large N. Indeed, by considering a diagonal presentation matrix M(t) for $H_1(\tilde{K}; \mathbb{R})$, and passing to $M(t^n)$, it is clear that $(p'(t))^N V_p =$ V_{p_r} .

Consider $x,y \in V_p$ as elements of $H_1(\tilde{K}; \mathbf{R})$; then $\langle x, y \rangle = \mu(t)/(p(t))^m$ say. Regarding x, y as elements of $H_1(\tilde{K}_1 \cup \cdots \cup \tilde{K}_n; \mathbb{R})$, it follows from the definition of the duality pairing that $\langle x, y \rangle = \mu(t^n)/(p(t^n))^m$. Thus if $V_p =$ $V_p^1 \oplus \cdots \oplus V_p^m$, an orthogonal direct sum in $H_1(\tilde{K}; \mathbb{R})$, we can take $V_{p_r}^s = (p'(t))^N V_p^s$ to obtain an orthogonal direct sum $V_{p_r} = V_{p_r}^1 \oplus \cdots \oplus V_{p_r}^m$. Let x', $y' \in H_{p_r}^s$, and choose $x, y \in V_p^s$ so that $x' = ((p'(t))^N x)$, $y' = ((p'(t))^N x)$

 $((p'(t))^N y)$. Then

$$[x', y']_{p_r}^s = \langle p_r(t)^{s-1} (p^r(t))^N x, (p^r(t))^N y \rangle$$

$$= (p^r(t))^{2N-s+1} \langle p(t^n)^{s-1} x, y \rangle$$

$$= (p^r(t))^{2N-s+1} \mu(t^n) / p(t^n)$$

where regarding x, y as elements of $H_1(\tilde{K}; \mathbb{R})$, the Blanchfield pairing of k gives $\langle p(t)^{s-1}x, y \rangle = \mu(t)/p(t)$. Thus

$$[x', y']_{p_r}^s = (p^r(t))^{2N-s} \mu(t^n)/p_r(t),$$

and so

$$(x', y')_{p_r}^s = (p'(\tau_r))^{2N-s} \mu(\tau).$$

Of course, if we regard x, y as elements of $H_1(\tilde{K}; \mathbb{R})$, then in the Hermitian space H_n^s we have $((x), (y))_n^s = \mu(\tau)$. Thus it only remains for us to evaluate $p'(\tau_r)$. Using L'Hôpital's rule, it is easy to see that

$$p'(\tau_r) = \lim_{t \to \tau_r} \left(\frac{p(t^n)}{p_r(t)} \right) = n \frac{\mathcal{G}(\tau)}{\mathcal{G}(\tau_r)} = n \frac{\sin \theta}{\sin \theta_r},$$

where $\mathcal{G}(z)$ is the imaginary part of z.

Thus if s is odd, $H_{p_r}^s$ contributes $\sigma_{\theta}^s(k)$ sign $(n \sin \theta_r)$ to the signature of l; and if s is even, all the corresponding signatures are zero. This proves the theorem.

The corollary follows easily by considering the distribution of the τ_c around the unit circle.

REFERENCES

- [B] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. 65 (1957), 340-356.
 - [K] C. Kearton, Signatures of knots and the free differential calculus, Quart J. Math. (to appear).

160 C. KEARTON

- [L] J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
- [M₁] J. Milnor, *Infinite cyclic coverings*, J. G. Hocking, Ed., Conf. on the Topology of Manifolds, Prindle, Weber and Schmidt, Boston, Mass., 1968, pp. 115–133.
 - [M₂] _____, On isometries of inner product spaces, Invent. Math. 8 (1969), 83-97.
- [S] H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23-32.
- [Sh] Y. Shinohara, On the signature of knots and links, Trans. Amer. Math. Soc. 156 (1971), 273-285.

COLLEGE OF ST. HILD AND ST. BEDE, DURHAM, DH1 1SZ, ENGLAND