AN ADDENDUM TO "ON GENERATING DISTRIBUTIVE SUBLATTICES OF ORTHOMODULAR LATTICES"

RICHARD J. GREECHIE

ABSTRACT. This addendum provides the details of a computation not presented in [1] but needed for a complete proof that Foulis-Holland sets generate distributive sublattices.

In [1] I called a nonempty subset S of an orthomodular lattice a Foulis-Holland set in case whenever x, y and z are distinct elements of S one of them commutes with the other two. I presented a proof that Foulis-Holland sets generate distributive sublattices. The purpose of this note is to provide a detailed proof that the function ψ defined in Lemma 2.2 of [1] is indeed onto.

Throughout this paper let $S = \{s_1, \ldots, s_n, t_1, \ldots, t_n\}$ be a finite nonempty subset of an orthomodular lattice L such that $s_i \in C(S \setminus \{t_i\})$ and $t_i \in C(S \setminus \{s_i\})$, for $i = 1, \ldots, n$, and let

$$A_S = \{x_1 \wedge \cdots \wedge x_n | x_i \in \{s_i, t_i\}\} \setminus \{0\}.$$

Lemma 2.2 of [1] states that the power set $\mathfrak{P}(A_S)$ of A_S is isomorphic to the sublattice $\langle S \rangle$ of L generated by S in case, for each $i=1,2,\ldots,n,s_i$ and t_i are complements in L. The proof proceeds by defining $\psi \colon \mathfrak{P}(A_S) \to \langle S \rangle$ by the rule $\psi(M) = \bigvee M$ for $M \subseteq A_S$. A computation shows that $M \subseteq N$ if and only if $\psi(M) < \psi(N)$. A shorter computation shows that $S \subseteq \text{image}(\psi)$ from which it is claimed that ψ is onto (and therefore a lattice isomorphism). What is missing is a proof that $\text{image}(\psi)$ is a sublattice of $\langle S \rangle$ (or equivalently of L). Clearly ψ preserves joins. But it is not clear that ψ preserves meets. This fact is needed to get from $S \subseteq \text{image}(\psi)$ to $\langle S \rangle \subseteq \text{image}(\psi)$. I am indebted to Professor M. F. Janowitz for this observation.

That ψ preserves meets is the content of the following proposition. We begin by reviewing some notation and making some observations.

For $M \subseteq A_S$, define $\delta(M) = \{x_2 \wedge \cdots \wedge x_n | \text{ for some } x_1 \in \{s_1, t_1\}, x_1 \wedge \cdots \wedge x_n \in M\}$ and for $y_1 \in \{s_1, t_1\}$ let

$$M_{y_1} = \{x_1 \wedge \cdots \wedge x_n \in M | y_1 = x_1\}.$$

Assume that s_i and t_i are complements in L, $i = 1, 2, \ldots, n$.

LEMMA. If
$$M, N \subseteq A_S$$
 and $x \in \{s_1, t_1\}$, then (L1) $\bigvee M = \bigvee M_{s_1} \bigvee \bigvee M_{t_1}$,

Received by the editors September 1, 1978.

AMS (MOS) subject classifications (1970). Primary 06A35, 06A25; Secondary 46C05, 46L10, 81A12.

ADDENDUM 217

(L2)
$$\delta(M_x) \cap \delta(N_x) = \delta((M \cap N)_x),$$

(L3)
$$\bigvee M_x = x \wedge (\bigvee \delta(M_x)),$$

(L4)
$$\bigvee M = [s_1 \bigvee \delta(M_{t_i})] \wedge [t_i \bigvee \delta(M_{s_i})] \wedge [\bigvee \delta(M)],$$

(L5)
$$\bigvee M > \bigvee \delta(M_{s_t}) \wedge \bigvee \delta(M_{t_t})$$
,

(L6)
$$\bigvee (M \cap N) \leq \bigvee (\delta(M) \cap \delta(N))$$
.

PROOF. (L1) and (L2) follow from the definitions. (L3) is simply an application of the Foulis-Holland Theorem. By (L1), (L3) and the Marsden-Herman Lemma

$$\bigvee M = \bigvee (M_{s_1}) \vee \bigvee (M_{t_1}) = [s_1 \wedge (\bigvee \delta(M_{s_1}))] \vee [t_1 \wedge (\bigvee \delta(M_{t_1}))]$$

$$= (s_1 \vee t_1) \wedge [s_1 \vee \bigvee \delta(M_{t_1})] \wedge [t_1 \vee \bigvee \delta(M_{s_1})]$$

$$\wedge [\bigvee \delta(M_{s_1}) \vee \bigvee \delta(M_{t_1})].$$

(L4) now follows from the fact that s_1 and t_1 are complements and $\delta M = \delta(M_{s_1}) \cup \delta(M_{t_1})$. (L5) follows immediately from (L4). Finally, (L6) follows from the fact that, for each $c \in M \cap N$, $\delta(c) \in \delta(M) \cap \delta(N)$ and $c \leq \delta(c)$.

PROPOSITION. For
$$M,N\subseteq A_S, (\bigvee M) \wedge (\bigvee N) = \bigvee (M\cap N)$$
.

PROOF. Let $m = (\bigvee M) \land (\bigvee N)$. If n = 1, the result is obvious. Assume the result true for all k < n. By (L1), (L3) and (L4) of the lemma and the Foulis-Holland Theorem

$$m = [s_1 \lor \lor \delta(M_{t_1})] \land [s_1 \lor \lor \delta(N_{t_1})] \land [t_1 \lor \lor \delta(M_{s_1})]$$

$$\land [t_1 \lor \lor \delta(N_{s_1})] \land [\lor \delta(M)] \land [\lor \delta(N)]$$

$$= [s_1 \lor ((\lor \delta(M_{t_1})) \land (\lor \delta(N_{t_1})))]$$

$$\land [t_1 \lor ((\lor \delta(M_{s_1})) \land (\lor \delta(N_{s_1})))] \land [\lor \delta(M)] \land [\lor \delta(N)].$$

Invoking the induction hypothesis we have

$$m = [s_1 \vee \vee (\delta(M_{t_1}) \cap \delta(N_{t_1}))] \wedge [t_1 \vee \vee (\delta(M_{s_1}) \cap \delta(N_{s_1}))]$$
$$\wedge [\vee (\delta(M) \cap \delta(N))].$$

By (L2), the Marsden-Herman Lemma and the fact that $s_1 \wedge t_1 = 0$, we have

$$m = ([s_1 \wedge (\vee \delta((M \cap N)_{s_1}))] \vee [t_1 \wedge (\vee \delta((M \cap N)_{t_1}))]$$
$$\vee [(\vee \delta((M \cap N)_{t_1})) \wedge (\vee \delta((M \cap N)_{s_1}))])$$
$$\wedge [\vee (\delta A \cap \delta B)].$$

By (L3) applied to $(M \cap N)_x$, the first two terms reduce to $[\bigvee (M \cap N)_{s_1}] \bigvee [\bigvee (M \cap N)_{t_1}]$ which by (L1) equals $\bigvee (M \cap N)$. Thus

$$m = ([\bigvee (M \cap N)] \bigvee [\bigvee \delta((M \cap N)_{s_1}) \cap \delta((M \cap N)_{t_1})])$$
$$\wedge [\bigvee (\delta(M) \cap \delta(N))]$$
$$= [\bigvee (M \cap N)] \wedge [\bigvee (\delta(M) \cap \delta(N))] = \bigvee (M \cap N)$$

where the second equality follows from (L2) applied to $M \cap N$ rather than M and the last equality follows from (L3). The proposition is proved.

REFERENCES

1. R. J. Greechie, On generating distributive sublattices of orthomodular lattices, Proc. Amer. Math. Soc. 67 (1977), 17-22.

DEPARTMENT OF MATHEMATICS, KANSAS STATE UNIVERSITY, MANHATTAN, KANSAS 66506