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LINEAR MAPS OF C »-ALGEBRAS PRESERVING

THE ABSOLUTE VALUE

L. TERRELL GARDNER1

Abstract. In order that a linear map of 6'-algebras «¡>: & -» ® preserve

absolute values, it is necessary and sufficient that it be 2-positive and

preserve zero products of positive elements: if x and y are positive in &,

with xy - 0, then <&x)$(y) = 0.

The generalized Schwarz inequalities of Kadison and Choi are extended

to the nonunital case.

1. Introduction. In [4], linear maps <j> of 6*-algebras which preserve the

absolute value were characterized as * -homomorphisms \p followed by a

map x -*• bx = bx/2xbx^2, where A is a positive element centralizing the image

of tfV. This sequel to [4] has as its principal purpose the exploration of other

characterizations of these maps. The main result is that a linear map <p:

é£ -» 'S of 6* -algebras preserves the absolute value if and only if tp is

2-positive and preserves zero products of positive elements: if x and v are

positive in &, and xv = 0, then <p(*X>( v) = 0 in "35. This is the main burden

of Theorem 2. 2-positivity is relaxed to positivity in the presence of lots of

projections in & (Theorem 1).

As in [4], one of our principal tools is the result of S. Sherman [8] to the

effect that if â is a 6 ""-algebra, the second conjugate (or double-dual) space

(S?)d of the underlying Banach space & has a natural structure of W*-algebra

in which 6? is o--weakly dense. @?d can be represented concretely as the

a-weak closure of ir(&), if it is the universal representation of 6B, the direct sum

0 g ma of the cyclic representations i7„ arising from the states (normalized

positive linear functionals) o of & by the Gel'fand-Neïmark-Segal construc-

tion. The Hilbert space underlying m we call the universal representation space

of 6E. For a swift and complete account of this, see Kadison's article [6].

Roughly, our proofs proceed by showing that our hypotheses persist from

<p: & -> <& to the map (<pd)d = <pdd: <2dd -> <$>** (second transpose map), and

that <pdd(7) which for simplicity we call </>(/), or b, lies in the centre of <K^dd)-

We then compose <pdd with x -» b~xx = b~x/2xb~x/2, a routine made precise

and explicit in [4], use known results, including spectral theory, to establish

the desired properties of the composed map \p, and climb back down.

Received by the editors August 28, 1978.

AMS (MOS) subject classifications (1970). Primary 46L05.

Key words and phrases. Q '-algebras, 2-positive map, absolute value, Jordan homomorphism.

'This work was partially supported by the National Research Council of Canada under Grant

No. A4006.

© 1979 American Mathematical Society

0002-9939/79/0000-0416/$03.00

271



272 L. T. GARDNER

Other principal tools are the main results of Kaplansky's paper [7], both the

density theorem and the strong continuity of the continuous functional

calculus, and Choi's generalized Schwarz inequality [1].

By-products of the investigation include nonunital versions of the Choi and

Kadison generalized Schwarz inequalities (Corollaries 1 and 2), of Choi's

result that a 2-positive unital Jordan map of C "-algebras is a ♦-homomor-

phism (Corollary 6), and of Kadison's result that a unital linear map of

<2*-algebras preserving absolute values on self-adjoint elements is a Jordan

map (Corollary 7).

2. Notations and definitions; statement of main results. For generalities on

6*-algebras and W*-algebras (von Neumann algebras), see the books of J.

Dixmier [2], [3].

If & is a ß*-algebra, éB+ = {x*x: x G 61} is a closed, convex, proper cone,

linearly spanning &. Every element a of £E+ has a unique square root al/2 in

6E+. If x G &, \x\ = (x*x)x/2 is the absolute value of x. A linear map <p:

& -» ty> is positive if <p(6E+) C ty>+, and 2-positive if the map <p ® icL^ is

positive on the ß "-algebra 6B ® M2(C) to <S <8> M2(C). Here M2(C) is the

ß*-algebra of 2 X 2 complex matrices [9]. The C*-algebra £E is unital if & has

a unit element I& or I. <p is a Jordan map (C*-homomorphism) if <b(x2) =

<b(x)2 for all (selfadjoint) x in &. If 6£ c L($), the ß "-algebra of all bounded

linear operators on the Hilbert space §, and if r/ G $, then «^ is the positive

linear functional x -» <xn, tj> on 6B.

Definition. A linear map <p: 6B -» $ of 6*-algebras will be called disjoint

if xy = 0 in & implies <K*>p( v) = 0 in ®.

Theorem 1. v4 2-positive, disjoint linear map of Q*-algebras preserves

absolute values.

If the domain algebra is A W* or approximately finite, "2-positive" can be

replaced by "positive".

Theorem 2. For a linear map </>:  6B -> ty>  of S *-algebras, the following

conditions are equivalent:

(i) <ppreserves absolute values;

(ii) <p is positive, and ^{iy^axa2) = ^{ax)^>{a2) for all a,, a2 G éE;

(iii) <p is 2-positive and disjoint;

(iii)' <p is 2-positive, and disjoint on positive elements.

In (ii) and hereafter, <p(7) has the interpretation ^(1) G tyx^.

3. Details, proofs. The proofs of the theorems will follow a series of lemmas,

some of independent interest.

Lemma 1. Let & be a unital Q*-algebra in which the linear span of the

projections is norm-dense. Let % be a unital Q*-algebra, and let <p: & -» ty> be

positive, unital and disjoint. Then d> is *-homomorphic.
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Proof. Since <p is a positive unital map, it is selfadjoint. If e is a projection

in (&, and a E (£, write

a = ae + a(\ — e)

and

<f>(a) = <t>(ae) + <b(a(l - e)),

and since [a(\ - e)]e = 0,

<t>(a)<¡>(e) = <b(ae)<b(e),

while since [ae](l — e) = 0,

<b(ae)(\ - <b(e)) = 0

or

<b(aepp(e) = c^ae).

Thus, <b(ae) = <p(a)<i>(e)> for all a E 6E and projections e E &, but then

since the linear span of the projection is dense in éE,

<¡>(ab) = <b(a)<p(b)   for all a, b E &.

.'. <p is »-homomorphic.   □

Lemma 2. For a positive linear map <f>: £E -» $ o/ &*-algebras, the following

are equivalent:

(i) <b preserves \ • \on selfadjoint elements;

(il) <p /j disjoint on selfadjoint elements.

Proof. (i)=>(ii). Suppose a,, a2 are selfadjoint in &, and axa2 = 0. Then

since axa* = 0,

a*axa*a2 = 0,       |a,| jût2| = 0,

and

IK|-NI-KI+|fl2|.
But then

M«i| -1«2|)| = Whl) - <K|a2|)| = <K|a.|) + <f»(N)>
so «KklWN) = 0, that is, |<K«i)l W^l = 0, so t^a,)^ - <>•

(ii)=s>(i). If a = a* E &, let a = a + — a" be its canonical decomposition

with a+ > 0, a" > 0, a+a~ = 0. Then </>(a) = <p(a+) - <b(a~) with <Ka+) >

0, <p(0 > 0, <Ka+)<KO = 0. so <p(a+) = >Ka)+, <KO = <Ka)_» and fi-

nally,

|<f>(a)| = <b(a)+ +<p(a)~ = <j>(a+ +a~)=> <p(|a|).   D

Lemma 3.1f<b: & -» $ «a 2-positive, linear map of Q*-algebras, then <pdd:

tfdd _> 6gdd fa 2-positive, and satisfies <pdd(x)*<pdd(x) < ||^||^x*jc) for all

x E (îdd.

Proof. <p is positive, so bounded; normalizing, we suppose it contractive.

Then <pdd is a positive contraction. Put b = ^(I), and let P be the support
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projection of b. Then b ' exists as a (usually unbounded) positive, selfadjoint

operator affiliated with Pty>ddP, and xb(x) = è_1/yd(x)Z>_1/2 is well defined

in Pty>ddP = ty) c ty>dd for x E S^. Moreover, xp so defined is positive and

unital on @?d, and in fact is 2-positive since if id2 and I2, are, respectively, the

identity mapping and the identity element of A/2(Q, we have

xp ® id2 = (¿-'/y^-)*-'/2) ® id2

= (b~x>2 0 I2)(t>dd(-) 0 id2)(6-1/2 <8> I2),

while <pdd is 2-positive because ¿>dd ® icL^ = (<p ® id2)dd is o-weakly continuous

on 8* 0 M2(C) = (&0 M2(Q)dd, and <f> ® id2 is positive. Now Choi's gen-

eralized Schwarz inequality [1, Corollary 2.8] applies, so that for x G &^, we

have xp(x)*xb(x) < xb(x*x), or writing <i> for <f>dd, b~l/2^>(x)*b-x^(x)b-x/2 <

b~1/2^>(x*x)b~x/2, whence ^x)*b~x^>(x) < <p(x*x). Now since 0 < b < / in

S,

<p(x)*<i>(x) = st.hm </>(x)*¿>l¿ + - / I    <j>(x)

< st.hm <j>(x)*(¿> + - / )    ¿(x) = «f>(x)*¿>~'¿(x)

< ¿(x*x),

for x G 6?dd. Returning to the original, possibly noncontractive <p, we have the

inequality claimed in the lemma.   □

The next two corollaries are nonunital generalizations of the results cited.

Corollary 2, in addition to removing the unital restriction, treats not only

selfadjoint but normal elements, as does St/zfrmer's Theorem 3.1 in [10].

Corollary 1 (Choi's generalized Schwarz inequality). If <j>: 6E -» ty>

is a 2-positive linear map of Q*-algebras, <b(x)*<p(x) < ||<p||<|>(x*x) for all

x G 6?.

Corollary 2 (Kadison's generalized Schwarz inequality). If d>: 6B ->

ty> is a positive linear map of Q*-algebras, l^-*)!2 < IMI'KM2)/0'' oil normal

x G 6B.

Proof. The restriction of ¿> to a commutative sub-ß*-algebra of & is

completely positive, by Stinespring [9, Theorem 4]. Since every normal x G &

is contained in such a subalgebra, Corollary 2 now follows from Corollary 1.

D

Corollary 3.1f<b: & —> ty> is a 2-positive linear map of Q*-algebras, <pdd is

strongly continuous.

Proof. If 17 is a vector in the universal representation space of ty>, we have,

if, as we may assume, </> is contractive,
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||<¡>dd(x)T,||2 = <r>dd(x)*<i»dd(x)T,, TJ>  < <<f>dd(x*x)T,, T)>

= s(<pdd(x*x)) = (<í,d(S))(x*x)=||x¿||2

for some £ in the universal representation space of d independent of x E éBdd.

D

Lemma 4. If <j> is 2-positive, and disjoint on positive elements, <p is disjoint.

Proof.

axa* = 0<&a*axa*a2 — 0<=>|a,|2|a2|2 = 0

^</>(|a,|>(|a2|2) = 0.

Since by Lemma 3,

||r>||r>(|a,.|2)>|«#,(a,)|2,       \<b(ax)\2\<p(a2)\2 = 0,

so <p(ax)<p(a^) = 0.   D

Corollary 4. A 2-positive, Jordan map is disjoint.

Proof. Apply Lemmas 2 and 4.   □

Corollary 5 (Choi [1, Corollary 3.2]). A 2-positive unital Jordan map of

Q-*-algebras is a *-homomorphism.

Proof. If <>: & -» © is 2-positive unital and Jordan, so is if»**: 3^ -> %M,

by Lemma 3 and Corollary 3; by the previous corollary, <pdd is disjoint; by

Lemma 1, <pdd is *-homomorphic: Therefore, so is its restriction <p.   □

Remark. This proof is neither simpler than Choi's original proof, nor

independent of the main results of his paper [1], but see Corollary 6.

Proof of Theorem 1. Let <f>: & -» % be a 2-positive, disjoint linear map of

C*-algebras. Then by Corollary 3, <pdd is strongly continuous, while, by

Lemma 2, <p preserves | • | on selfadjoint elements. By Kaplansky's density

theorem and the strong continuity of | • | on bounded sets of selfadjoint

operators, we see that <pdd preserves | • | on selfadjoint elements of 6Edd, so that

(again Lemma 2) <pdd is disjoint on the selfadjoint part of <îdd. Especially, if e,

(/ = 1, 2) are projections in ÉE00, and exe2 = 0, then <b(ex)<p(e2) = 0. (Where no

confusion can result, we write <p instead of <pdd.) Then if a E <2dd, and

a = 2?Aye,, with Xj E C, the e, pairwise orthogonal projections, <p(a) =

EfAytfKfc)), with the <p(e,) disjoint and positive, so

\t>(a)\ = S IM<H<v) = 4>(2 hl'j) = «M)-
Thus by spectral theory, </>dd preserves | • | on normal elements, so on (unital)

commutative «-subalgebras. From the first part of the proof of Theorem 1 of

[4], we can conclude that b = <i>dd(/) commutes with each normal element of

<pdd(6îdd), so with all of <j>dd((2dd), and that ^ defined on <3?d by xj,(a) = b~x ■

<f>dd(a) is *-homomorphic on commutative *-subalgebras of ÉÜdd, so is a

Jordan homomorphism.
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Since t// is by Lemma 3 a 2-positive map as well as Jordan-homomorphic,

and unital to Supp b ®ddSupp b, Corollary 5 shows it »-homomorphic. Then

<p = bxp = ô'/fyè1/2 preserves absolute values. This proves the first statement

of Theorem 1.

If & is unital, and the set of linear combinations of orthogonal families of

projections in 6B is norm-dense in 6B, and if <f>: & -> ty> is positive and

disjoint, then we need not lift the argument above to éE*1, but argue directly

in 6? as above that b = <b(I) centralizes «p(6B) in ty>, so

xP = b~x<t>: & -+ Supp b ty>dd Supp b

(see [4, Theorem 2]), is positive, unital and disjoint. Now Lemma 1 shows that

xp is »-homomorphic, so <f> = bxp preserves absolute values. This proves the

second statement of Theorem 1.   □

Lemma 5. If & is a unital ring, ty> a ring, and <p: & -» % is an additive map

satisfying <b(I)<f>(x2) = <b(x)2 for all x in éE, then <p(/) centralizes <b(â).

Proof.

<*>(/)<*.((/ + x)2) = <*>(/)<*>(/ + 2x + x2) - <*»(/)(<*>(/) + 2<p(x)) + <f>(x2)

= <p(/)(«*,(/) + 2<p(x))-f-<f>(x)2

= <tf/)2 + 2<p(/)<p(x) + <f.(x)2;

but this is

(<b(I) + ¿>(x))2 = <f>(/)2 + <K/>J>(x) + <*>(*)*(/) + <Kx)2,

so <f>(/>K*) = <K*W) for all x G &.   □
Proof of Theorem 2. That (i) => (ii) was established in Theorem 2 of [4].

(ii) => (i). Because <pdd is o-weakly continuous, and multiplication is sep-

arately continuous in the a-weak topology on 6£dd and ty>dd, the identity (ii)

persists for <pdd, with ax, a2 G 6Bdd. Then Lemma 5 applies, and b = <p(/)

centralizes <f>dd(éBdd). It then follows from (ii) that xp = 6_1<pdd is »-homomor-

phic on cB00 so ¿>dd = bxp preserves absolute values, as does its restriction <p.

(i) => (iii). That (i) => <p completely positive and disjoint follows from Theo-

rem 1 of [4].

(iii) => (i). This is Theorem 1.

(iii) => (iii)'. Trivial.

(iii)' => (iii). This is Lemma 4.   □

Corollary 6 (The nonunital version of Corollary 5). A 2-positive

Jordan map of ß *-algebras is a *-homomorphism.

Proof. Let <b: & -» % be such a map. Then by Corollary 4, <p is 2-positive

and disjoint, so, by Theorem 2, <f> preserves absolute values. Then, by

Theorem 2 of [4], <pdd = ^>(I)xp, where xp is a unital »-homomorphism of

6Bdd -> Supp <K/)^ddSupp <b(I). But <pdd is a Jordan map, so d<7) = <f>dd(/) is
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a projection: namely, Supp <b(I). Thus <f>dd = tf>, and its restriction <p is

»-homomorphic.   □

Corollary 7 (Nonunital version of [5, Theorem 6]). If <p: & -» ® is a

linear map of ß*-algebras which preserves absolute values on selfadjoint ele-

ments, then there exist a unique Jordan map \f/: & —> <3àdd and a unique positive

element b of ®dd supported on \Ja<s& range <b(a) and centralizing <X#) such

that <b(x) = bty(x)for all x E a.

Proof. If <p: & -» $ preserves | • | on selfadjoint elements, so does ^dd:

éE*1 -» %Mf as in the proof of Theorem 1, so by Lemma 2, <pdd preserves

disjointness on selfadjoint elements. Let ^ be a maximal commutative

♦-subalgebra of @?d. Then / E <ï>. By [9, Theorem 4], the restriction of <bdd to

fy is completely positive, so 2-positive; therefore it preserves absolute values,

by Lemma 4 and Theorem 1. Now the first part of the proof of Theorem 1 in

[4] shows that <b(I) centralizes ^(ty), so <b(I) commutes with ^(u) for all

unitary « in <3?d, hence with all <|>dd(x), x E <îdd. Now with b = <b(I) and

P = Supp b,

^ = 6-Vd=e-1/2«í»dd(-)¿~'/2.

mapping éEdd unitally into P^>ddP satisfies the hypotheses of Theorem 5 of

[5], so is a Jordan map, and <#> = bty. This proves the existence claim.

The uniqueness claim can be proved following the uniqueness proof of [4],

Theorem 2, or can be inferred from [4], Theorem 2 by restriction to commuta-

tive subsystems.   □

Remark. The transposition map on Af2(Q is unital, positive, and disjoint

on positive elements, but is not disjoint. This shows that "2-positive" cannot

be weakened to "positive" in (iii)'.

Problem. Can "2-positive" be replaced by "positive" in the first part of

Theorem 1?

Finally, we note a further, easily proved relation between the properties

"Jordan" and "| • |-preserving" for linear maps: A Jordan homomorphism of

ß "-algebras which preserves absolute values is a ♦-homomorphism. In fact, if

\¡/: & -> 'S is such a map,

^(a*a) = ^(|a|2) = t^(|a|)2 = |^(a)|2 = ^(a*)^(a).

A polarization completes the proof.
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