THE LYNDON-HOCHSCHILD-SERRE SPECTRAL SEQUENCES FOR SHEAVES WITH OPERATORS

TATSUO SUWA¹

ABSTRACT. Two spectral sequences associated with a G-sheaf and a normal subgroup of G are given together with an application.

If H is a normal subgroup of a group G, the Lyndon-Hochschild-Serre spectral sequence relates the cohomology of H and of G/H to that of G. In this note we give two analogous spectral sequences in the cohomology theory of groups with coefficients in sheaves with operators. Applications include a direct proof of a theorem of Conner and Raymond [1].

- 1. Sheaves with operators. We start by briefly reviewing the cohomology of groups with coefficients in sheaves with operators. For details, we refer to [1], [2], and [3]. Let (G, X) be a continuous action of a group G on a topological space X. A G-sheaf over X is a sheaf S of abelian groups over X with an action (G, S) such that the projection $S \to X$ is equivariant and that for each $g \in G$ and $x \in X$, $g: S_x \to S_{gx}$ is a group homomorphism between the stalks. The categories of G-sheaves over X and of abelian groups are denoted, respectively, by \mathcal{C}_X^G and \mathcal{C} . The functor $\Gamma_X^G: \mathcal{C}_X^G \to \mathcal{C}$ sends a G-sheaf S to the group $\Gamma(X, S)^G$ of G-invariant sections of S over X. For a G-sheaf S over X, the cohomology H : (G, S) of G with coefficients in S is defined by $H : (G, S) = R : \Gamma_X^G(S)$, where $R : \Gamma_X^G$ denotes the right derived functor of Γ_X^G .
- 2. The Lyndon-Hochschild-Serre spectral sequences for G-sheaves. Let H be a normal subgroup of G and let $\varphi \colon X \to X/H$ be the canonical projection onto the orbit space. The category \mathcal{C}_X^G can be thought of as a subcategory of \mathcal{C}_X^H in a natural manner. If M is a G-module, then the group $\Gamma^H(M) = M^H$ of H-invariant elements of H becomes naturally a G/H-module. Thus the functor $\Gamma_X^H \colon \mathcal{C}_X^H \to \mathcal{C}$ sends \mathcal{C}_X^G into the category $\mathcal{C}_X^{G/H}$ of G/H-modules, since it is factorized as $\Gamma_X^H = \Gamma^H \circ \Gamma_X$. We denote by $\mathcal{C}_{X/H}$ the category of sheaves of abelian groups over X/H. The functor $\varphi_*^H \colon \mathcal{C}_X^H \to \mathcal{C}_{X/H}$ assigns, by definition, to each H-sheaf S the sheaf over X/H determined by the presheaf $U \to \Gamma(\varphi^{-1}(U), S)^H$. The restriction of φ_*^H to the subcategory \mathcal{C}_X^G

Received by the editors December 2, 1978.

AMS (MOS) subject classifications (1970). Primary 18G40, 18H10, 55B30; Secondary 32C35. Key words and phrases. Lyndon-Hochschild-Serre spectral sequence, cohomology of groups with coefficients in sheaves with operators.

¹Partially supported by the National Science Foundation and the Sakkokai Foundation.

can be thought of as a functor into the category $\mathcal{C}_{X/H}^{G/H}$ of G/H-sheaves over X/H in a natural manner.

LEMMA. If \S is an injective G-sheaf over X, then

- (1) \mathcal{G} is an injective H-sheaf over X,
- (2) $\Gamma_X^H(\S)$ is an injective G/H-module,
- (3) $\varphi_*^H(\S)$ is a $\Gamma_{X/H}^{G/H}$ -acyclic G/H-sheaf over X/H, i.e.

$$R^{n}\Gamma_{X/H}^{G/H}\left(\varphi_{*}^{H}(\mathfrak{I})\right)\left(=H^{n}\left(G/H,\varphi_{*}^{H}(\mathfrak{I})\right)\right)=0, \quad for \ n>1.$$

PROOF. (1) Set $O = \mathbf{Z}(H)$ in [2, Lemma 5.6.2]. (2) Recall the factorization $\Gamma_X^H = \Gamma^H \circ \Gamma_X$. By [2, Corollaire de Proposition 5.1.3], Γ_X sends an injective G-sheaf to an injective G-module. On the other hand, Γ^H sends an injective G-module to an injective G/H-module. (3) By (1) above and [2, Corollaire de Proposition 5.1.3], the sheaf $\varphi_*^H(\S)$ is a flabby sheaf over X/H. Consider the spectral sequence [3, (1.2)] for $S = \varphi_*^H(\S)$:

$$E_2^{p,q} = H^p(G/H, H^q(X/H, \varphi_*^H(\mathfrak{G}))) \Rightarrow H^n(G/H, \varphi_*^H(\mathfrak{G})).$$

Since $\varphi_{\star}^{H}(\mathfrak{I})$ is flabby, the spectral sequence degenerates to yield

$$H^{n}(G/H, \varphi_{*}^{H}(\mathbb{S})) \simeq H^{n}(G/H, H^{0}(X/H, \varphi_{*}^{H}(\mathbb{S})))$$
$$= H^{n}(G/H, H^{0}(X, \mathbb{S})^{H}).$$

Also consider the Lyndon-Hochschild-Serre spectral sequence for the G-module $H^0(X, \mathcal{G})$:

$$E_2^{p,q} = H^p(G/H, H^q(H, H^0(X, \mathcal{G}))) \Rightarrow H^n(G, H^0(X, \mathcal{G})).$$

By (1) above and [2, Corollaire de Proposition 5.1.3], $H^0(X, \S) = \Gamma_X(\S)$ is injective either as G-module or as H-module. Hence $H^n(H, H^0(X, \S)) = 0 = H^n(G, H^0(X, \S))$ for n > 1. Therefore we have $H^n(G/H, H^0(X, \S)^H) = H^n(G/H, H^0(H, H^0(X, \S))) = H^n(G, H^0(X, \S)) = 0$, for n > 1. Q.E.D.

THEOREM. If S is a G-sheaf over X and if H is a normal subgroup of G, then for each nonnegative integer q, the group $H^q(H, S)$ has a canonical structure of G/H-module and the sheaf $R^q \phi_*^H(S)$ that of G/H-sheaf over X/H and there are two spectral sequences

$${}^{\prime}E_{2}^{p,q} = H^{p}(G/H, R^{q}\varphi_{*}^{H}(\mathbb{S})) \Rightarrow H^{n}(G, \mathbb{S}),$$

$${}^{\prime\prime}E_{2}^{p,q} = H^{p}(G/H, H^{q}(H, \mathbb{S})) \Rightarrow H^{n}(G, \mathbb{S}).$$

PROOF. Lemma (1) shows that $R cdot \Gamma_X^H(S)$ and $R cdot \varphi_*^H(S)$ can be computed by taking a G-injective resolution of S. Thus, for each q, $H^q(H, S) = R^q \Gamma_X^H(S)$ has a canonical structure of G/H-module and $R^q cdot \varphi_*^H(S)$ that of G/H-sheaf over X/H. With the aid of the lemma, [2, Théorème 2.4.1] is applied to the

commutative diagram

to obtain the spectral sequences.

- 3. An application. (3.10) Theorem in [1] is obtained from the above theorem as follows. Let (N, W) be a properly discontinuous action of a group N on W. A representation $\Phi: N \to \operatorname{GL}(2k, \mathbb{Z})$ defines an N-sheaf structure on the constant sheaf $\mathfrak{Z}^{2k} = W \times \mathbb{Z}^{2k}$. Let $L \subset N$ be a normal subgroup satisfying
 - (i) L acts freely on W,
 - (ii) $L \subset \operatorname{Ker} \Phi$.

Denote by $\mu: W \to W/L = B$ the canonical projection onto the orbit space. By (ii), Φ defines an N/L-sheaf structure on the constant sheaf $\mathcal{Z}^{2k} = B \times \mathbb{Z}^{2k}$ on B. We set X = W, G = N, H = L, $\varphi = \mu$ and $S = \mathcal{Z}^{2k}$ in the first spectral sequence of the theorem. The condition (i) implies that $R^q \mu_*^L(\mathcal{Z}^{2k}) = 0$, for q > 1. Hence the spectral sequence degenerates to yield $H^n(N/L, \mu_*^L(\mathcal{Z}^{2k})) \simeq H^n(N, \mathcal{Z}^{2k})$. Moreover, from conditions (i) and (ii), we see that the sheaf $\mu_*^L(\mathcal{Z}^{2k}) \to B$ is identical with $\mathcal{Z}^{2k} \to B$. Hence we get

$$H^n(N/L, \mathcal{Z}^{2k}) \simeq H^n(N, \mathcal{Z}^{2k}).$$

For another application, see the proof of [3, Corollary 4.3].

BIBLIOGRAPHY

- 1. P. E. Conner and F. Raymond, *Holomorphic Seifert fiberings*, Proceedings of the Second Conference on Compact Transformation Groups, Part II, Lecture Notes in Math., vol. 299, Springer-Verlag, Berlin and New York, 1972, pp. 124–204.
- 2. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9 (1957), 119-227.
 - 3. T. Suwa, Deformations of holomorphic Seifert fiber spaces, Invent. Math. 51 (1979), 77-102.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO, JAPAN