UNBOUNDED UNIFORMLY ABSOLUTELY CONTINUOUS SETS OF MEASURES

WAYNE C. BELL

Abstract

It is shown that a uniformly absolutely continuous set of finitely additive measures can be decomposed into bounded and finite dimensional parts.

1. Introduction. It is well known that a uniformly absolutely continuous set G of (finitely additive) measures need not be bounded. One can, for example, let δ be a finite sum of atoms ($=$ two-valued measures) and G be the set A_{δ} of all δ-continuous measures. We will show that this is "the only way in which G can be unbounded", in that G can be decomposed into bounded and finite dimensional parts. Consequences include a boundedness criterion for G in terms of atoms as well as the equivalence of the pointwise boundedness and boundedness of G.

Suppose S is a set, F is a field and Σ is a σ-field of subsets of $S, \operatorname{ba}(F)$ $(\mathrm{ca}(\Sigma))$ is the set of bounded and additive (countably additive) functions from F into R (= reals). For $G \subseteq \mathrm{ba}(F)$ we will denote by G^{+}the set of nonnegatively valued elements of G. For $\lambda \in \mathrm{ba}(F)^{+}$and $\eta \in \mathrm{ba}(F)$ we will denote the λ-continuous part of η by $P_{\lambda}(\eta)$, the total variation function of η by $|\eta|$ and the set of λ-continuous elements of $\mathrm{ba}(F)$ by A_{λ}. For a discussion of the lattice operations see [4].
2. The atomic-nonatomic decomposition of Sobczyk and Hammer. An atom (of $\mathrm{ba}(F)$) is an element of $\mathrm{ba}(F)$ whose range contains exactly two elements. We will denote the set of all atoms whose nonzero value is 1 by T. If $\mu \in \mathrm{ba}(F)^{+}$, then E in F is a μ-atom if the contraction of μ to E is an atom; that is, if for each $V \in F$ we have either $\mu(E \cap V)$ or $\mu(E-V)$ is zero. An element η of $\mathrm{ba}(F)$ is atomic ($=$ discrete in [6]) if η is zero or a sum of atoms and nonatomic if there is no atom in $\mathrm{ba}(F)^{+}$less than or equal to $|\eta|$. In $\mathrm{ca}(\Sigma)$ this definition of atomic is equivalent to the statement that each μ-positive set contains a μ-atom and is more suitable (though not equivalent) in $\mathrm{ba}(F)$ where definitions which are dependent on sets of measure zero do not carry over well as with the notions of mutual singularity and absolute continuity.

A subdivision of $E \in F$ is a finite disjoint subset of F whose union is E. A

[^0]Key words and phrases. Finitely additive measure, uniformly absolutely continuous, decomposition.
refinement of a subdivision D of E is a subdivision H of E which is such that each V in D is the union of the set $H(V)=\{I \in H \mid I \subseteq V\}$.
As noted in [6] a pair of atoms is either mutually singular or linearly dependent. If δ is an atom and $\eta \in \mathrm{ba}(F)$ with $|\eta| \wedge|\delta|=0$ we have a slight improvement of the ε-Hahn decomposition (of any pair of mutually singular elements of $\mathrm{ba}(F)$) in [2] in that we can select for $\varepsilon>0$ an $E \in F$ such that $|\eta|(S)<|\eta|(E)+\varepsilon$ and $|\delta|(E)=0$. If η is also an atom, then we can require $|\eta|(S)=|\eta|(E)$. Therefore by induction we have, for any disjoint (= pairwise mutually singular) sequence $\left(\mu_{i}\right)_{i=1}^{M}$ of atoms there exists a subdivision $D=$ $\left\{E_{i} \mid i=1,2, \ldots, M\right\}$ such that $\mu_{i}\left(E_{i}\right)=\mu_{i}(S)$ for each $i \leqslant M$. (Note that "disjoint" is used here in the sense of the lattice, $\mathrm{ba}(F)$, and not in the sense of the introduction in [6] although, as noted there, for a finite sequence of atoms the two notions are equivalent [6, p. 843].) Consequently we have:
2.1. Lemma. If H is a subdivision of S and $\left(\mu_{i}\right)_{i=1}^{M}$ is a disjoint sequence of atoms, then there exists a refinement $D=\left\{E_{i} \mid i=1,2, \ldots, K\right\}$ of H such that $\mu_{i}\left(E_{i}\right)=\mu_{i}(S)$ for each $i \leqslant M$.

The following theorem is due to Sobczyk and Hammer [6].
2.2. Theorem. Each μ in $\operatorname{ba}(F)^{+}$admits a decomposition $\mu=\mu_{0}+\mu^{\prime}$ such that:
(1) the measures μ_{0} and μ^{\prime} are mutually singular elements of $\mathrm{ba}(F)^{+}$;
(2) the measure μ^{\prime} is the sum of a disjoint sequence $\left(\mu_{i}\right)_{i=1}^{\infty}$ where each μ_{i} is either zero or an atom of $\mathrm{ba}(F)^{+}$;
(3) for each $\varepsilon>0$ there exists a subdivision D of S such that $\mu_{0}(E)<\varepsilon$ for each $E \in D$.

We can also obtain a separation of μ in $\mathrm{ba}(F)^{+}$into atomic and nonatomic parts via the Riesz decomposition theorem as in [5, p.143]. In particular the set of atomic elements is the smallest band containing T and the set of nonatomic elements is the complementary band, that is the band $T^{\perp}=\{\eta \in$ $\mathrm{ba}(F)||\eta| \wedge t=0$ for each $t \in T\}$.

That these two decompositions are the same follows from:
2.3. Lemma. If $\eta \in \operatorname{ba}(F)$, then the following two statements are equivalent:
(1) if $t \in T$, then $|\eta| \wedge t=0$;
(2) for each $\varepsilon>0$ there exists a subdivision D of S such that $|\eta|(E)<\varepsilon$ for each $E \in D$.

The proof of this is essentially a reproduction of arguments given in [6, Lemmas 4.1 and 4.2] and is hence omitted.

We conclude this section by noting that the representation $P_{\lambda}(\mu)=\sup _{k} \mu$ $\wedge k \lambda$ for μ, λ in $\operatorname{ba}(F)^{+}$(see, for example, [1]) easily implies:
2.4. Lemma. If each of λ and δ is in $\mathrm{ba}(F)^{+}$and $\lambda \wedge \delta=0$, then
(1) $P_{\lambda+\delta}(\eta)=P_{\lambda}(\eta)+P_{\delta}(\eta)$ for each $\eta \in \mathrm{ba}(F)$,
(2) $P_{\lambda}(\mu) \wedge P_{\delta}(\mu)=0$ for each $\mu \in \mathrm{ba}(F)^{+}$.
3. The Decomposition. The proof of the main theorem will involve the following finitely additive version of a theorem of Saks [3, p. 308].
3.1. Lemma. Suppose $\mu \in \mathrm{ba}(F)^{+}, \varepsilon>0$ and $\left(\mu_{i}\right)_{i=0}^{\infty}$ is as in 2.2. Then there exists a positive integer M and a subdivision $D=\left\{E_{i} \mid i=1,2, \ldots, K\right\}$ of S such that $\lambda\left(E_{i}\right)<\varepsilon$ for each $i \leqslant K$ where $\lambda=\mu_{0}+\sum_{i=M+1}^{\infty} \mu_{i}$.

Proof. Let M be such that $\sum_{i=M+1}^{\infty} \mu_{i}(S)<\varepsilon / 2$ and D be a subdivision of S such that if $E \in D$, then $\mu_{0}(E)<\varepsilon / 2$. Then for each $E \in D$ we have

$$
\lambda(E)=\mu_{0}(E)+\sum_{i=M+1}^{\infty} \mu_{i}(E)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

For $\mu \in \mathrm{ca}(\Sigma)^{+}$we can of course obtain for each $i \leqslant M$ a μ-atom V_{i} such that $\mu\left(V_{i}\right)=\mu_{i}\left(V_{i}\right)=\mu_{i}(S)$ and therefore we have:
3.2. Corollary (Saks). If $\mu \in \operatorname{ca}(\Sigma)^{+}$and $\varepsilon>0$, then there exists a subdivision D of S such that for each $E \in D$ either $\mu(E)<\varepsilon$ or E is a μ-atom.

Proof. Let M, K, λ and $\left(E_{i}\right)_{i=1}^{K}$ be as in 3.1. For each $i \leqslant M$ we have $\mu_{i} \wedge\left(\mu-\mu_{i}\right)=0$ hence there exists a V_{i} such that $\mu\left(V_{i}\right)=\mu_{i}\left(V_{i}\right)=\mu_{i}(S)$ and $\left(\mu-\mu_{i}\right)\left(V_{i}\right)=0$; hence V_{i} is a μ-atom. Let $V=\cup{ }_{i=1}^{M} V_{i}$, then

$$
D=\left\{V_{i} \mid i \leqslant M\right\} \cup\left\{E_{i} \sim V \mid i \leqslant K\right\}
$$

is the desired subdivision since for each $i \leqslant K$ we have

$$
\begin{aligned}
\mu\left(E_{i} \sim V\right) & =\mu_{0}\left(E_{i} \sim V\right)+\sum_{j=1}^{M} \mu_{j}\left(E_{i} \sim V\right)+\sum_{j=M+1}^{\infty} \mu_{j}\left(E_{i} \sim V\right) \\
& \leqslant \mu_{0}\left(E_{i}\right)+\sum_{j=M+1}^{\infty} \mu_{j}\left(E_{i}\right)=\lambda\left(E_{i}\right)<\varepsilon .
\end{aligned}
$$

3.3. Theorem. Suppose $G \subseteq \mathrm{ba}(F)$ is uniformly absolutely continuous with respect to $\mu \in \mathrm{ba}(F)^{+}$. Then there exist two subsets G_{1} and G_{2} of $\mathrm{ba}(F)$ such that:
(1) $G \subseteq G_{1}+G_{2}$;
(2) each of G_{1} and G_{2} is uniformly absolutely continuous with respect to μ;
(3) if $\eta_{1} \in G_{1}$, and $\eta_{2} \in G_{2}$, then $\left|\eta_{1}\right| \wedge\left|\eta_{2}\right|=0$;
(4) $G_{1} \subseteq A_{\delta}$ where δ is a finite sum of atoms, and
(5) G_{2} is bounded.

Proof. Let $\left(\mu_{i}\right)_{i=0}^{\infty}$ be as in 2.2 and $\varepsilon>0$ be such that $\mu(E)<\varepsilon$ implies that $|\xi|(E)<1$ for each $\xi \in G$. Let λ, M and $D=\left\{E_{i} \mid i=1,2, \ldots, K\right\}$ be as in 3.1 with the stipulation (2.1) that for each $i \leqslant M$ we have $\mu_{i}\left(E_{i}\right)=\mu_{i}(S)$.
(We will therefore have $M \leqslant K$.) Let $\delta=\sum_{i=1}^{M} \mu_{i}(=\mu-\lambda)$ and define $G_{1}=\left\{P_{\delta}(\xi) \mid \xi \in G\right\}$ and $G_{2}=\left\{P_{\lambda}(\xi) \mid \xi \in G\right\}$.
(1) Let $\xi \in G$. Then since $\mu=\delta+\lambda$ and $\delta \wedge \lambda=0$ we have (by 2.4)

$$
\xi=P_{\mu}(\xi)=P_{\delta+\lambda}(\xi)=P_{\delta}(\xi)+P_{\lambda}(\xi) \in G_{1}+G_{2} .
$$

(2) If $\eta \in G_{2}$, then $\eta=P_{\lambda}(\xi)$ where $\xi \in G$, hence $|\eta|=\left|P_{\lambda}(\xi)\right| \leqslant|\xi|$ so that G_{2} (and similarly G_{1}) is uniformly absolutely continuous with respect to μ since G is.
(3) If $\eta_{i} \in G_{i}(i=1,2)$, then (by 2.4)

$$
\begin{aligned}
\left|\eta_{1}\right| \wedge\left|\eta_{2}\right| & =P_{\delta}\left(\left|\eta_{1}\right|\right) \wedge P_{\lambda}\left(\left|\eta_{2}\right|\right) \\
& \leqslant P_{\delta}\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|\right) \wedge P_{\lambda}\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|\right)=0
\end{aligned}
$$

(4) This is clear since $P_{\delta}(\xi) \in A_{\delta}$.
(5) $M+K$ is a bound for G_{2}.

Let $\eta \in G_{2}$ where $\eta=P_{\lambda}(\xi)$ with $\xi \in G$ and $i \in\{1,2, \ldots, K\}$. If $i>M$, then for each $n \leqslant M$ we have $\mu_{n}\left(E_{i}\right)=0$; hence $\mu\left(E_{i}\right)=\lambda\left(E_{i}\right)<\varepsilon$ so that

$$
|\eta|\left(E_{i}\right)=\left|P_{\lambda}(\xi)\right|\left(E_{i}\right) \leqslant|\xi|\left(E_{i}\right)<1 .
$$

Now if $i \leqslant M$, then

$$
\mu\left(E_{i}\right)=\lambda\left(E_{i}\right)+\sum_{j=1}^{M} \mu_{j}\left(E_{i}\right)=\lambda\left(E_{i}\right)+\mu_{i}\left(E_{i}\right)
$$

and since $\mu_{i} \wedge \lambda=0$ we have $\mu_{i} \wedge|\eta|=0$. Therefore there exists a V_{i} such that $\mu_{i}\left(V_{i}\right)=\mu_{i}(S)$ and $|\eta|\left(V_{i}\right)<1$. Since both conditions hold if we replace the set V_{i} by its intersection with E_{i} we may select $V_{i} \subseteq E_{i}$. Now $\mu_{i}\left(E_{i} \sim V_{i}\right)$ $=0$ so that

$$
\mu\left(E_{i} \sim V_{i}\right)=\lambda\left(E_{i} \sim V_{i}\right) \leqslant \lambda\left(E_{i}\right)<\varepsilon
$$

hence $|\eta|\left(E_{i} \sim V_{i}\right) \leqslant|\xi|\left(E_{i} \sim V_{i}\right)<1$. Consequently we have

$$
\begin{aligned}
|\eta|(S) & =\sum_{i=1}^{K}|\eta|\left(E_{i}\right) \\
& =\sum_{i=1}^{M}|\eta|\left(V_{i}\right)+\sum_{i=1}^{M}|\eta|\left(E_{i} \sim V_{i}\right)+\sum_{i=M+1}^{K}|\eta|\left(E_{i}\right) \\
& \leqslant \sum_{i=1}^{M} 1+\sum_{i=1}^{M} 1+\sum_{i=M+1}^{K} 1=M+K .
\end{aligned}
$$

Note that if $\mu \in \mathrm{ca}(\Sigma)^{+}$and $G \subseteq \mathrm{ca}(\Sigma)$, then the projection description of G_{1} can be simplified. That is $G_{1}=\left\{\xi_{V} \mid \xi \in G\right\}$, the set of contractions of elements of G to the set V of 3.2 (or any element of Σ which separates δ and $\lambda)$. Similarly $G_{2}=\left\{\xi_{S \sim V} \mid \xi \in G\right\}$.
3.4. Corollary. If $G \subseteq b a(F)$ is uniformly absolutely continuous and $\left\{P_{t}(\xi)(S) \mid \xi \in G\right\}$ is bounded for each $t \in T$, then G is bounded.

Proof. For each $i \leqslant M$ let $t_{i}=\mu_{i} / \mu_{i}(S)$ and B_{i} be a bound for $\left\{P_{t_{i}}(\xi)(S) \mid \xi\right.$ $\in G\}$. Then $B=\sum_{i=1}^{M} B_{i}$ is a bound for G_{1} and therefore $M+K+B$ is a bound for G.

In $\mathrm{ca}(\Sigma)$, the boundedness condition in the hypothesis of 3.4 may be replaced by: $\{\xi(E) \mid \xi \in G\}$ is bounded for each μ-atom, E. Another consequence of 3.4 is:
3.5. Corollary. A uniformly absolutely continuous set of nonatomic measures is bounded.

Finally, we obtain the following theorem which can be found in [4].
3.6. Corollary. If $G \subseteq \operatorname{ba}(F)$ is uniformly absolutely continuous and $\{\xi(E) \mid \xi \in G\}$ is bounded for each $E \in F$, then G is bounded.

Proof. By the hypothesis and the boundedness of G_{2} it follows that $\left\{\eta(E) \mid \eta \in G_{1}\right\}$ is bounded for each $E \in F$ and consequently G_{1} is bounded since it is contained in the finite dimensional subspace $A_{\boldsymbol{\delta}}$. Therefore G is contained in the sum of two bounded sets and is bounded.
Acknowledgements. The author wishes to thank Professors R. G. Bilyeu and P. W. Lewis for several conversations.

References

1. S. Bochner and R. S. Phillips, Additive set functions and vector lattices, Ann. of Math. (2) 42 (1941), 316-324.
2. R. B. Darst, A decomposition of finitely additive set functions, J. Reine Angew. Math. 210 (1962), 31-37.
3. N. Dunford and J. T. Schwartz, Linear operators. I, General theory, Interscience, New York, 1958.
4. S. Leader, The theory of L^{p}-spaces for finitely additive set functions, Ann. of Math. (2) 58 (1953), 528-543.
5. H. H. Schaeffer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.
6. A. Sobczyk and P. C. Hammer, A decomposition of additive set functions, Duke Math. J. 11 (1944), 838-846.

Department of Mathematics, Murray State University, Murray, Kentucky 42071

[^0]: Presented to the Society, January 24, 1979; received by the editors October 12, 1978. AMS (MOS) subject classifications (1970). Primary 28A10.

