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UNBOUNDED UNIFORMLY ABSOLUTELY

CONTINUOUS SETS OF MEASURES

WAYNE C. BELL

Abstract. It is shown that a uniformly absolutely continuous set of finitely

additive measures can be decomposed into bounded and finite dimensional

parts.

1. Introduction. It is well known that a uniformly absolutely continuous set

G of (finitely additive) measures need not be bounded. One can, for example,

let 8 be a finite sum of atoms ( = two-valued measures) and G be the set As of

all ¿¡-continuous measures. We will show that this is "the only way in which G

can be unbounded", in that G can be decomposed into bounded and finite

dimensional parts. Consequences include a boundedness criterion for G in

terms of atoms as well as the equivalence of the pointwise boundedness and

boundedness of G.

Suppose S is a set, F is a field and 2 is a o-field of subsets of S, ba(F)

(ca(2)) is the set of bounded and additive (countably additive) functions from

F into R (= reals). For G E ba(F) we will denote by G+ the set of

nonnegatively valued elements of G. For A G ba(F)+ and r/ G ba(F) we will

denote the ^-continuous part of tj by P^y), the total variation function of tj

by 117j and the set of A-continuous elements of ba(F) by Ax. For a discussion

of the lattice operations see [4].

2. The atomic-nonatomic decomposition of Sobczyk and Hammer. An atom

(of ba(F)) is an element of ba(F) whose range contains exactly two elements.

We will denote the set of all atoms whose nonzero value is 1 by T. If

H E ba(F)+, then F in F is a ¡i-atom if the contraction of ^ to F is an atom;

that is, if for each V E F we have either ix(F n V) or ¡u(F — V) is zero. An

element tj of ba(F) is atomic ( = discrete in [6]) if tj is zero or a sum of atoms

and nonatomic if there is no atom in ba(F)+ less than or equal to |tj|. In ca(2)

this definition of atomic is equivalent to the statement that each /¿-positive set

contains a ¡u-atom and is more suitable (though not equivalent) in ba(F)

where definitions which are dependent on sets of measure zero do not carry

over well as with the notions of mutual singularity and absolute continuity.

A subdivision of E G F is a finite disjoint subset of F whose union is E. A
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refinement of a subdivision D of E is a subdivision H of E which is such that

each V in D is the union of the set H(V) = {/ G H\I E V).

As noted in [6] a pair of atoms is either mutually singular or linearly

dependent. If S is an atom and tj G ba(F) with |tj| A |â| = 0 we have a slight

improvement of the £-Hahn decomposition (of any pair of mutually singular

elements of ba(F)) in [2] in that we can select for e > 0 an E E F such that

\y]\(S) < \r]\(E) + e and \8\(E) = 0. If tj is also an atom, then we can require

M(S) = hK^)- Therefore by induction we have, for any disjoint (= pairwise

mutually singular) sequence ( p)f= i OI" atoms there exists a subdivision D =

{E¡\i = 1,2, . . . ,M) such that p(E¡) = ¡^(S) for each i < M. (Note that

"disjoint" is used here in the sense of the lattice, ba(F), and not in the sense

of the introduction in [6] although, as noted there, for a finite sequence of

atoms the two notions are equivalent [6, p. 843].) Consequently we have:

2.1. Lemma. If H is a subdivision of S and (p)^Lx is a disjoint sequence of

atoms, then there exists a refinement D = {E¡\i = 1, 2, . . . , K) of H such that

Pi(E¡) = p(S)for each i < M.

The following theorem is due to Sobczyk and Hammer [6].

2.2. Theorem. Each p. in ba(F)+ admits a decomposition u = p$ + ¡i' such

that:

(1) the measures p0 and p' are mutually singular elements of ba(F)+ ;

(2) the measure jn' is the sum of a disjoint sequence ( u,)°l, where each p¡ is

either zero or an atom ofba(F) + ;

(3) for each e > 0 there exists a subdivision D of S such that fi0(E) < e for

each E G D.

We can also obtain a separation of p in ba(F)+ into atomic and nonatomic

parts via the Riesz decomposition theorem as in [5, p. 143]. In particular the

set of atomic elements is the smallest band containing T and the set of

nonatomic elements is the complementary band, that is the band Tx = {tj G

ba(F)| |tj| A t = 0 for each t E T).

That these two decompositions are the same follows from:

2.3. Lemma. If-q E ba(.F), then the following two statements are equivalent:

(l)ift G T, then |tj| A t = 0;

(2) for each e > 0 there exists a subdivision D of S such that \r¡\(E) < e for

each E ED.

The proof of this is essentially a reproduction of arguments given in [6,

Lemmas 4.1 and 4.2] and is hence omitted.

We conclude this section by noting that the representation Px( ¡i) = supt n

A kX for u, X in ba(F)+ (see, for example, [1]) easily implies:
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2.4. Lemma. If each ofX and 8 is in ba(F)+ andX f\ 8 = 0, then

(1) Px + s(v) = PA(ij) + PMfor each r, G ba(F),

(2) Px(,x) A P„(M) = Ofor each /i G ba(F)+.

3. The Decomposition. The proof of the main theorem will involve the

following finitely additive version of a theorem of Saks [3, p. 308].

3.1. Lemma. Suppose /i G ba(F)+, e > 0 and (ft),"o is ^ m 2-2. Then there

exists a positive integer M and a subdivision D = {E¡\i = 1,2, . . . , K) of S

such that X(E,) < e for each i < K where X = /Iq + 2°1M+1 ¡i¡.

Proof. Let M be such that "2°°=M+X ftiS) < e/2 and D be a subdivision of

S such that if F G D, then Hq(E) < e/2. Then for each F G Z) we have

\(F) = /x0(F)+     f    ft(£)<y + |=,
i = A/+l z z

For /i G ca(2)+ we can of course obtain for each i < M a /x-atom P, such

that p(V¡) = ^(Vj) = Pi(S) and therefore we have:

3.2. Corollary (Saks). If p E ca(2)+ and e > 0, then there exists a

subdivision D of S such that for each E E D either u(F) < e or E is a ¡i-atom.

Proof. Let M, K, X and (F,)fL, be as in 3.1. For each i < M we have

Hi A ( M _ ft) = 0 hence there exists a K, such that u( P)) = ju,( P,) = /ij(5)

and (ft - ju,)(K,) = 0; hence V¡ is a u-atom. Let V = (J f_x V¡, then

D = {V,\i < M) U {E, ~ V\i < K }

is the desired subdivision since for each i < K we have

M oo

M(F,. ~ F ) = Mo(F,. ~ K" ) + 2 ft(£i ~ r ) +     2    ft(£, ~ K )
7=1 7 = A/+1

< ft3(^,) +    2    ft(£/) = H^i) < e-
j=M+l

3.3. Theorem. Suppose G E ba(F) « uniformly absolutely continuous with

respect to [i E ba(F) + . Then there exist two subsets Gx and G2 ofba(F) such

that:

(1) G E Gx + G2;
(2) each of Gx and G2 is uniformly absolutely continuous with respect to u;

(3) i/tj, G Gx, andf\2 E G2, then |tj,| A |t/2| = 0;

(4) Gx Q As where 8 is a finite sum of atoms, and

(5) G2 is bounded.

Proof. Let (/l),°10 be as in 2.2 and e > 0 be such that jti(F) < e implies

that |||(F) < 1 for each £ G G. Let X, M and D = {F,|i = 1,2,. . . , K) be as

in 3.1 with the stipulation (2.1) that for each /' < M we have ^¡(E^ = ^(S).
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(We will therefore have M < K.) Let 5 = Sfi, u, (= u - X) and define

Gx = {P4(8|É G 0} and G2 = {/»X(Ö|€ G 0}.

(1) Let {GG. Then since jx = r5 + XandSAA = 0we have (by 2.4)

è = P„(ö = Pä+X(£) = P4(ö + PX(Í) G 0, + 02.

(2) If tj G 02, then tj = Px(£) where £ G 0, hence |rj| = |PX(£)| < |£| so that

02 (and similarly 0,) is uniformly absolutely continuous with respect to u

since 0 is.

(3) If tj, G 0, (i = 1,2), then (by 2.4)

MA|r,2|=PÄ(|T„|)AP*(|r,2|)

<^(M+M)apx(|i»,|+|%|)-o.
(4) This is clear since Ps(i¡,) G As.

(5) M + A is a bound for 02.

Let tj G 02 where tj = PX(Q with £ G 0 and i G {1,2, . . . , K). If i > M,

then for each « < A/ we have u„(£,) = 0; hence p(E¡) = X(E¡) < e so that

|t,|(£,.)=|Pa«)|(£,.)<|^,)<1-

Now if /' < M, then

u(/s,.) = À(£,) + 2 **(£,) = X(£() + p(Et)
y-i

and since jt, A A = 0 we have u,- A N = 0- Therefore there exists a Pj such

that Pi(V¡) = ^(5") and |tj|(FJ) < 1. Since both conditions hold if we replace

the set V¡ by its intersection with E, we may select V¡ E E¡. Now p¡(E¡ ~ V¡)

= 0 so that

p(E, ~ K,) = X(/s,. ~ F,) < A(£,) < e

hence |-171(jET,- ~ V¡) < \(\(E¡ ~ V¡) < 1. Consequently we have

\V\(S)= S|tj|(£,.)
1 — 1

= 2 \MW + 2 |n|(3 ~ ^) +   2   M(£,)
1=1 »-i 1-A/+1

MM K

< 2 i + 2 i +   2   i = a/+a.
;-l (=1 i-M+l

Note that if u G ca(2)+ and G E ca(2), then the projection description of

Gx can be simplified. That is 0, = {£v\£ EG), the set of contractions of

elements of G to the set V of 3.2 (or any element of 2 which separates 8 and

X). Similarly 02 = {&_K|É G 0).

3.4. Corollary. If G E ba(F) is uniformly absolutely continuous and

{P,(£)(S)\£ G 0} is bounded for each t G T, then G is bounded.
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Proof. For each i < M let t¡ = ^/^(S) and B¡ be a bound for {P,(o(S')|¿

EG). Then B = Sfl, B¡ is a bound for G, and therefore M + K + B is a

bound for fj.

In ca(2), the boundedness condition in the hypothesis of 3.4 may be

replaced by: {£(F)|£ G G) is bounded for each /x-atom, F. Another con-

sequence of 3.4 is:

3.5. Corollary. A uniformly absolutely continuous set of nonatomic

measures is bounded.

Finally, we obtain the following theorem which can be found in [4].

3.6. Corollary. If G E ba(F) is uniformly absolutely continuous and

{£(F)|£ E G) is bounded for each E G F, then G is bounded.

Proof. By the hypothesis and the boundedness of G2 it follows that

{t/(F)|tj G Gx) is bounded for each E E F and consequently Gx is bounded

since it is contained in the finite dimensional subspace As. Therefore G is

contained in the sum of two bounded sets and is bounded.
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