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OF/»-SYMMETRIC FUNCTIONS

PAVEL G. TODOROV

Abstract. In comparison with Goodman's well-known method and results,

we use an alternate method by which we obtain more tractable formulas for

the coefficients of /"-symmetric univalent functions of classes Sp and 2V in

terms of the coefficients of their associated functions in the class S. Our

method and results are simple and convenient and they make it easier to

compute the coefficients for functions in the classes Sp and 2ZP, because we

obtain a new recursion formula for them.

1. Introduction. Let 5 be the class of functions

fiz) = z + a2z2 + ... (1)

that are regular and univalent in the disk A: \z\ < 1, and let 2 be the class of

functions

F(z) = z + a0+ ax/z + . . . (2)

that are meromorphic and univalent for \z\ > 1. According to the "area

theorem", the relation

2 «kl2 < i (3)
n = l

holds. Further, let Sp c S, p = 1, 2, . . . , be the class of /»-symmetric uni-

valent functions

fp(z) =[f(zp)]l/p = z + afixz"+x + ag^z2»*1 + ... (4)

where / G S, and let 27 c 2, p = 1, 2, . . . , be the class /»-symmetric uni-

valent functions

, n(j>)       n(p)

w = Wm = z  ^ + ̂  + --- (5)

where fp E Sp. Again, the area theorem yields the inequality

2 (np - l)\a%lx\2 < 1. (6)
n-i

Explicit expressions for the coefficients a^, and a^l., in terms of the {an)

are desirable and useful. Such formulas have been obtained recently by

Goodman [1] who used induction. In this paper we find more tractable
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explicit formulas for the coefficients aj£\x and a^}_x in terms of {an}. Our

method is based on a classic formula due to Faà di Bruno (cf. [2]-[6]).

In §2 we first give the precise form of the Faà di Bruno formula we need,

and then we adapt it for application to coefficient problems that arise from

certain operations with power series (superpositions, inversions, etc.). In §3

we find the coefficients a(^\x and ot^_x in terms of the {an}.

2. On a form of the Faà di Bruno formula. The Faà di Bruno formula [2]-[6]

gives an explicit form of the wth derivative of the composite functions

g(z) = <j>(t) ° f(z) s <j>[f(z)], where the functions d>(i), f(z) and g(z) are regu-

lar in their respective domains. If certain derivatives are denoted by

gn=g(n\z),    *.«*<->(r)    and   fn=Pn)(z),       « = 1,2,...,    (7)

then the classic formula due to Faà di Bruno is

& = 2 <íA(/i,/2,•••>/„-*+.), (8)
k = \

where

«*«■*.a-..,)-2 ,,,„,".■,.,(&)"(£)""(*)"• (9)

and the sum is taken over all nonnegative integers vx, v2, . . . , vn for which

vx + v2 + ■ • • +vn = k,       vx + 2v2 + • • • +nvn = n. (10)

The functions Bnk(fx, . . . ,fn_k+x), defined in (9)—(10), are homogeneous

isobaric polynomials of degree k and of weight n in the variables

/i»/2> • • • U„-k+1 ana" they are called partial Bell polynomials; the g„ in (8) are

called complete Bell polynomials in the variables <bk,fk, 1 < k < n ([4]-[6]).

We note that the partial Bell polynomials Bnk(fx, . . . ,f„_k + x) depend only

on the variables/, 1 < s < n — k + 1, while on the right-hand side of (9) we

find all the/, 1 < s < n. This is a result of the appearance of all vs, 1 < s < n

in (10). Hence for 2 < k < n, n > 2 in (10) we must have vs = 0 for all

[s\n > s > n — k + I]. A proof of this fact is contained in the proof we give

in establishing the following precise form of the Faà di Bruno formula.

Theorem 1. Let functions w = <j>(t) and t = f(z) be regular in domains G,

and G2, respectively, where G, = f(Gz). Then the classic Faà di Bruno formula

for the nth derivative, n > 1, of the composite function g(z) = </>(f) ° f(z) =

<b(f(z)) has the (more precise) form

n

&,= 2 <MU/»---,/n-*+i). (H)
k=\

where the partial polynomials now have the form

P"nkU\> ■ ■ • Un-k+l)
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and the sum is taken over all nonnegative integers vx, v2, . . . , vn_k^x satisfying

vx + v2 + • • • +v„_k + x = k,

vx + p2 + • • • +(n- k+ l)pn_k+x = «. (13)

Proof. For k = 1 the statement is true because (12) and (13) coincide with

(9) and (10), respectively. Let 2 < k < «, « > 2. By substitution in (10), we

obtain

¿ (s - l)v, = n-k. (14)
5 = 2

But for nonnegative integers v„ 2 < s < n and j — 1 > « — A:, this equation

is absurd, unless ^ = 0 for all s > n — k + 1, in order that (10) should be a

compatible pair of equations. Hence equations (9) and (10) take the form (12)

and (13), respectively. This completes the proof of Theorem 1.

With the more precise formula of Faà di Bruno, (11)-(13), we can now

modify the known results that were obtained by using the relations (8)—(10)

(see [4]-[6]) to obtain formulas that suit our purpose better.

The Bell polynomials Bnk = Bnk(fx, . . . ,fn_k+x) satisfy the recursion for-

mula ([6, p. 136, formula [3k]])

n      ,       ri       \

kBnk  =    2   [u -   lj/n-u+lfiu-1,*-1>

1 < k < «,   « > 1,   B„0 = 0,   £oo = 1.    (15)

If in (12) we introduce the Taylor coefficients

c„ -/./»!,       «=1,2,..., (16)

and if instead of the polynomials (12) we use the polynomials

Q*(C1' • • • ' Cn-k+\)

= (l/n\)Bnk(V.cx,...,(n-k+l)\cn_k+x),       « > 1,    (17)

then (15) acquires the following reduced form:

i   n-k+l

C„*=T    2    cCn_,        \<k<n,   n > 1,    C„0 = 0,    Coo=L
"    /t~i

Q*  =   d*(Cl> • • • ' Cn-k+V- (18)

Here, of course, we have used (16) and (17). Now (12), (17), and (18) permit

us to write the homogeneous isobaric polynomials Cnk(cx, . . . , c„_k+x) of

degree k and weight « in the form

r    l„ „ ~\ — V   *-   I' \Ln-k+l) /1rv.
Ç*(ci. ■■■,c„.k+l) = 2é—„,...„-j—. (19)

where the summation runs over all the nonnegative integers vx, . . . ,vn_k+x

satisfying (13). In particular, we note that the last polynomials have the form
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C„, = c„,        Cnn = (l/n\)c"x,       n > 1. (20)

Now we can give our solution to the problem posed in § 1.

3. An explicit form of the coefficients a{„P)+l and a^_x in the coefficients

{a„}. For an arbitrary x, let (x)k denote the factorial polynomial

(x)k = x(x - 1) ■ • • (x - k + 1),       k = 1, 2, ...,     O)0 = 1,  (21)

a symbol we shall use in our proof of the following new result.

Theorem 2. The coefficients in the expansions (4) and (5) have the following

explicit form in terms of the {a„} in the expansion (1):

a%\\ =  2 [~\ Cnk{a2, ..., a„_,+2),       n,p = 1, 2, . . . ,        (22)
*=iVP h

<-i =  2 (-M Cnk(a2, ..., an_k+2),       n,p = 1, 2, . . . ,      (23)
*-i\   Plk

where

Cnk(a2, . . ., an_k+2) = 2    \ . . ,    "" +2, » (24)

and the sum is taken over all solutions in nonnegative integers vx, . . . ,vn_k+,

of the system (13).

Proof. The function d>(r) = tm, <i>(l) = 1, is regular at the point / = 1 for

any arbitrary complex number m, and the function / = \p(z) = f(z)/z, where

f(z) E S, is regular at z = 0 where it has the value t = \p(0) = 1. Hence, the

composite function

gW _,-.(/<£)) S(M)",     ,(„,.,

is regular at z = 0, and, indeed, in the disk |z| < 1 since i/*(z) =£ 0 in \z\ < I.

Thus we have the following expansion, valid for/ G S and |z| < 1:

(My=1+ J]g„(m)z",       /(z)G5. (25)

The Taylor coefficients gn(m) = g(n)(0)/n! can be found immediately with

the help of the Faà di Bruno precise formula (11)-(13)

¿>(*>(1) = (m)k,   k>l,   and   ^n>(0) = n\an+x,   n > 1.

If we use these explicit values in (11)—(13), and (17)—(19), we obtain the

explicit formula

&(«) = i 2 (rn)kBnk(l\a2, . . . , (n - k + \)\a„_k+2)
n\ k = x

n

=  2 (w)tC^(a2, . . . , a„_k+2),       n=l,2,..., (26)
*-i
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where the polynomials Cnk(a2, . . . , an_k+2) are given by (24) with the vk

satisfying (13).

In particular, if in (25) we set m = 1/'/>,/» = 1, 2, ..., and replace z by zp,

\z\ < 1, we obtain the expansion (4). If we write aff+x = g„(l/p), then we

obtain (22) from (26). If in (25) we set m - - (l/p), p = 1, 2, .. ., and

replace z by l/zp, \z\ > 1, we obtain the expansion (5). If we write a*£l, =

g„[-(l//»)], then we obtain the formula (23) from (26). This completes the

proof of the Theorem 2.

Remark. Theorem 2 holds even when the function (1) is only regular in the

disk \z\ < 1. Then the expansions (4) and (5) are convergent, respectively, in

the disk \z\ < rx/p and in the ring r~(X/p) < \z\ < oo, where r is the distance

from point z = 0 to the nearest zero of the function (f(z)/z) in \z\ < 1. If

(f(z)/z) =£ 0 in \z\ < 1, then the expansions (4) and (5) are valid in \z\ < 1

and \z\ > 1, respectively.

If we substitute cM for a¡¡+x in (18), we find that the polynomials (24) satisfy

the recursion formula

■   n-k+l

^-nk 77       ¿L       ap+l^n-ti,k-l>
K     /t=l

1 < k < «,   « > 1,     Cn0 = 0,    Cœ = 1,       (27)

Cnk — Cnk(a2' • • • » an-k + 2)>

where (the first and the last polynomials are)

Cni = an+X,       O, = (l/«!)a2",       «>1. (28)

The recursion relation (27) is very useful for computing the successive Cnk;

this is one of the main contributions to our study of the coefficients a^_x,

a(p)anp+\-

For example, from (27) and (28) we obtain the following typical examples

of the polynomials (24):

^-n = a2'        C2X = a3,        C3I = a4,        C32 = a2a3,       C41 = a5,

C42 = a2a4 + \a\,       C43 = \a\av       Cw = ¿a|,

Ql = a6> C$2 = a2a5 + a3a4' C53 = 5a2a4 + îa2a3>

Q4 = 6a2ö3' Q5 = 720 fl2-

From these equations, we obtain for example

t»!             !          (P + 0 /                  x     (P + 0(2? + 1) / 2 î\
o^>_, - --a6 + yy       '(a2a5 + a3a4) - -^-^f->-(a2a4 + a2a\)

P p 2/»

(/» + 1)(2/» + 1)(3/» + 1)   3
1 ClfU2"3

6p4

(/> + 1)(2/» + 1)(3/» + l)(4p + 1)   5
- a2.

120/»5



8 G P. G. TODOROV

This coefficient is essentially the same as that obtained by Goodman [1, for-

mula (10), p. 439] except for the oversight "a\af in his formula rather than

the correct "a\a3".
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