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TOPOLOGICALLY EQUIVALENT MEASURES

IN THE CANTOR SPACE

FRANCISCO J. NAVARRO-BERMÚDEZ

Abstract. The Cantor space is realized as a countable product X of

two-element sets. The measures ¡i and v in X are topologically equivalent if

there is a homeomorphism h oí X onto itself such that fi = vh. Let 9 be the

family of product measures in X which are shift invariant. The members

¡i(r) of 9 are in one-to-one correspondence with the real numbers r in the

unit interval. The relation of topological equivalence partitions the family 9

into classes with at most countably many measures each. A class contains

only the measures ¡i(r) and u(l — r) when r is a rational or a transcendental

number. Equivalently, if r is rational or transcendental and p(s) is topologi-

cally equivalent to u(r) then s = rors=l — r.

1. Introduction. Let X denote a topological space. Two Borel measures p

and cinl are said to be topologically equivalent whenever p = vh for some

homeomorphism h of X onto itself. This notion sets up an equivalence

relation which partitions the family of Borel measures into disjoint classes,

each one consisting of those measures which are mutually equivalent. By

restricting attention, if necessary, to a suitably defined subfamily of measures,

one can ask for the number of classes there are. One can also try to uncover

necessary conditions, as well as sufficient conditions, which intrinsically

characterize those measures which belong to the same class.

Topologically equivalent measures in the /i-dimensional unit cube, the

space of irrational numbers in the unit interval, and the Hubert cube have

been studied, respectively, by Oxtoby and Ulam [1], Oxtoby [2], and by

Oxtoby and Prasad [3]. In this article I initiate the study of topologically

equivalent measures in the Cantor space. By restricting attention to a suitably

defined family of Borel measures, which, incidentally, are everywhere posi-

tive, nonatomic and normalized, I am able to utilize arguments of a number

theoretic character and will be able to show, in particular, that the relation of

topological equivalence partitions that family into a number of classes which

is the same as the cardinality of the continuum.

2. Topological and measure theoretic preliminaries. It is well known that if C

is the Cantor "middle thirds" set and X a nonempty, compact, perfect,

O-dimensional metric space, there is a homeomorphism from C onto A. In

particular, A can be taken to have the form
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x= Us„
n=\

where S„ = (1, 2} for all n. X carries the product topology induced by the

discrete topology in each of the factors Sn.

Every open set U of X is a union % of basic open sets. If U is also closed,

hence compact, then only finitely many basic open sets enter into that union.

A basic open set is obtained by fixing finitely many coordinates. Thus, if the

union % consists of only finitely many basic open sets, then there is a

smallest positive integer n such that none of the coordinates after the nth

place is fixed in any of the basic open sets of the union %. If the nth

coordinate, or an earlier one, is not fixed in some basic open set of %, then it

is possible to express this set as the union of two sets where that coordinate is

fixed. For example, the set

S,x {2} x • •• x{l} xsn+xx ...

is the union of the two sets

{1}X{2}X--- X{1}XS„+1X...

and

{2} x {2} x • • • x{l}xS„+1x ....

It follows that the closed-open set U can be expressed as the union of finitely

many disjoint basic open sets each of which has the form

{/,} x {/2} x • • • x {/„} x Sn+Xx ...        (ik = 1 or2)      (2.1)

with the same n for all of them.

Denote the set (2.1) with the symbol </',, i2, . . ., /„). Two of these sets

</',, i2, . . . , /„> and (J\,j2, ■ • • >/„) are equal or disjoint, depending on

whether the n-tuples (/,, i2, . . . , /„) and (jx,j2, . . . ,j„) are identical or not.

Thus, the complement of </,, i2, . . ., /„) is the union of all the sets

<A,, k2, . . . , k„y where (kx, k2, . . . , kn) is an n-tuple different from

(/,, i2, . . . , /„). This complement is an open set. Hence, the basic open set

</',, i2, ...,/„> is closed as well. The sets (2.1) will be called special closed-

open sets of length n.1 They are defined by the fact that all coordinates up to

the nth place are fixed. The truth of the following theorem is seen im-

mediately.

Theorem 2.1. Let U be a closed-open set of the Cantor space X. There is a

positive integer n such that U can be expressed as the disjoint union of finitely

many special closed-open sets of length n.

The family f of measures in X to which attention will be restricted consists

of product measures ft = LT^=, (i„ subject to the condition

1 This terminology is not standard. Some authors call them "thin cylinders"; others call them

"intervals". For the important computations in this paper (i.e., Theorem 2.2, and its con-

sequences) they are crucial, hence my choice to call them "special".
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ft,(l) - ft,+,(l)   for all«. (2.2)

Of course, the factors p„ are all normalized, and thus, as p„(l) 4- p„(2) = 1,

the same requirement (2.2) holds with 1 replaced by 2. For convenience write

p = p(r), where r is the value ^(1). Amongst the product measures these are

precisely those which are invariant under the shift transformation F of A

defined by T(xx, x2, x3, . . . ) = (x2, x3, . . . ) for every point x =

(X|, x2, x3, . . . ).

For each real number r in the unit interval there is a measure p(r). As the

correspondence r -» p(r) is one-to-one, the family *$ has the cardinality of the

continuum. Incidentally, each ¡i(r) is a normalized Borel measure which,

except when r equals 0 or 1, is everywhere positive and nonatomic.

Let U = </,, i2, . . . , i„} be a special closed-open set of length n. Then

p(r)(U) = px(ix)p2(i2) . . . p„(in),

and since pk(ik) equals r or 1 — r depending on whether ik is 1 or 2, it follows

that

p(r)(U) - r>(\ - ry-J (2.3)

where/ is the number of times that ik = 1 (1 < k < n).

It is evident that the measures p(r) and p(l — r) are always topologically

equivalent, for, indeed, p(l - r) = p(r)h, where h is the homeomorphism

h = IÏ~_A with hn: Sn^ Sn given by h„(\) = 2 and hn(2) = 1 for all n.

Theorem 2.2. // the measures n(r) and p(s) are topologically equivalent, then

there exist positive integers n and m, and integers a0, ax, . . ., an, bQ, bx, . . . ,bm

with

0 < Oj < »!//! (n - /)!    and   0 < è, < m\/j\ (m - /)!

such that

s = a0r" + axr"-x(\ - r) + ■ ■ ■ +a„_xr(\ - r)"~x + an(\ - r)n    (2.4)

and

r = Vm + Vm-'(1 -*)+••• +bm_xs(l - s)1"'1 + bm(\ - s)m.

(2.5)

Proof. Let h be a homeomorphism of A onto itself such that p(s) = p(r)h,

and let V denote the closed-open set <1>. On the one hand, p(s)(V) = s. On

the other hand, h(V), being a closed-open set is, by Theorem 2.1, a disjoint

union % of finitely many special closed-open sets </,, i2, . . . , in} of length n.

By (2.3) the p(/-)-measure of </',, i2, . . ., in} is /^(l — r)"~J, and thus, if a. is

the number of closed-open sets in % whose p(r)-measure is r^(l — r)"~j

(hence 0 < a, < n\/j\(n - /)!), then

V,(r)(fi(V)) - a0r" 4- axr"~x(l - r) + • ■ • + an(\ - r)".

Formula (2.4) now follows by substituting into the equation p(s)( V) =

p(r)(h(V)) the values obtained for n(s)(V) and ¡i(r)(h(V)). Formula (2.5) is
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proven similarly by considering A ~ ' instead of A.

Theorem 2.2 is surely elementary, yet it will prove to be a basic tool in

proving the main results which appear in the next section.

3. The main results. Let K(r) denote the class of measures in <§ which are

topologically equivalent to p(r). As was remarked earlier, along with p(r) the

class K(r) always contains the measure ft(l — r).

Theorem 3.1. Each class K(r) contains at most countably many measures of

the family §.

Proof. If the measure p(s) is to belong to the class K(r), then the number s

must satisfy equation (2.4) for some choice of integers n > 1 and

a0, ax, . . . , an. For fixed n, as 0 < a. < n\/j\(n — j)\, by varying the integers

a0, a!,..., an, the right-hand side of (2.4) generates only finitely many

different numbers s. It follows that the number of measures fi(s) in the class

K(r) is at most countable.

Theorem 3.2. The number of classes K(r) is the same as the cardinality c of

the continuum.

Proof. This result follows immediately from Theorem 3.1 and the fact that

the correspondence r -» p(r) is one-to-one.

Theorem 3.2 can be generalized to the family of all Borel measures ft in X.

Let K(p) denote the class of Borel measures which are topologically equiv-

alent to ft. A Borel measure is determined by its values at basic closed-open

sets. As there are only countably many of these, there can only be cK° = c

many different Borel measures in X. Hence, there are at most c classes K( p).

However, a class K(p) cannot contain different classes K(r), and since there

are c of these, there must exist c classes K(n). In particular, it follows that

there exist c Borel measures in the Cantor space X which are topologically

inequivalent to each other.

If r is a rational number and j is any number, both in the unit interval,

then the measures ¡x(r) and ¡i(s) cannot possibly be topologically equivalent

unless 5 is a rational number also. For, indeed, the right-hand side of formula

(2.4) defines a rational number whenever r is rational. Thus, if r is rational,

then the class K(r) only contains measures p(s) with 5 rational.

The next theorem represents a remarkable and rather surprising result.

Theorem 3.3. Let r and s be two rational numbers in the unit interval. The

measures p(r) and fi(s) are topologically equivalent if and only if s = r or

s = 1 - r.

In terms of classes Theorem 3.3 has an equivalent formulation as follows.

Theorem 3.3'. // r is a rational number in the unit interval, then the class

K(r) consists only of the measures p(r) and fi(l — r).
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The proof of Theorem 3.3 is deferred to the next section. In the meantime

an example will be used to illustrate the kind of arguments which are involved

in the proof. By Theorem 3.3, the measures p(|) and p(\) cannot be

topologically equivalent. Assuming the contrary, Theorem 2.2 makes it possi-

ble to write

*- »oor + ̂ ar '(»+■ ••+uir      m
where b0 is either 0 or 1. After clearing denominators (3.1) becomes

2(4)m~x = b0 + bx3 + ■ ■ ■ +bm3m. (3.2)

As 4 = 1 (mod 3), it follows from (3.2) that 2 = b0 (mod 3), which is impossi-

ble since ¿>0 can only be 0 or 1.

If r is a transcendental number and 5 is any irrational number, both in the

unit interval, then the measures p(r) and n(s) cannot be topologically equiv-

alent unless s is transcendental also. For, indeed, the right-hand side of

formula (2.5) defines an algebraic number whenever 5 is algebraic. Thus, if r

is transcendental, then the class K(r) only contains measures p(s) with s

transcendental.

Theorem 3.4. Let r and s be two transcendental numbers in the unit interval.

The measures p(r) and p(s) are topologically equivalent if, and only if,s = r or

s = 1 - r.

Proof. The sufficieny of the condition is clear. To prove that the condition

is necessary assume that p(s) and p(r) are topologically equivalent, and,

hence, that formulas (2.4) and (2.5) hold for some choice of integers as

stipulated in Theorem 2.2. It follows that r and s can be expressed in the form

r = r0 + rxs + ■ ■ ■ + rJsJ, (3.3)

s = s0 + sxr + • ■ ■ +skrk, (3.4)

where the coefficients r0, rx, . . . , ry, s0, sx, . . . , sk are integers with both r0

and s0 equal to 0 or 1, where/ and k are such that 1 < / < m, 1 < k < n, and

where r},=£ 0 and sk i= 0. Substitute s from (3.4) into (3.3) to obtain, after

rearranging terms, a polynomial p(r) in r equal to 0. As r is transcendental, all

the coefficients of p(r) must be zero. \fjk > 1, then the coefficient that goes

with r'* is rj(sky which, for as long as /-.=/= 0 and sk =/= 0, cannot be zero.

Hence, jk = 1, which entails that / = k = 1. It follows that r = r0 + rxs,

s = s0 + sxr, and, consequently, that

P(r) = r0+ rxs0 + (rxsx - \)r.

But then rxsx - 1 = 0, so that r, = sx = 1 or r, = sx = - 1, and (3.4) be-

comes (ï) s = s0 + r or (ii) s = s0 — r. Since 5 = 1 4- r is not in the unit

interval, s0 cannot be 1 in (i). Hence, s0 = 0 and s = r. Since í = — r is not

in the unit interval, j0 cannot be 0 in (ii). Then sQ = 1 and s = \ — r.

In terms of classes Theorem 3.4 has an equivalent formulation.
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Theorem 3.4'. // r is a transcendental number in the unit interval, then the

class K(r) consists only of the measures p(r) and fi(l — r).

Through Theorem 3.3' and Theorem 3.4' a'definitive intrinsic description of

the classes K(r) has been obtained when r is rational or transcendental. The

only case that remains open is when r is algebraic, which means that there is

complete knowledge of all the classes K(r) except for countably many.

4. Proof of Theorem 33. The sufficiency of the condition is clear. To

establish that the condition is necessary proceed as follows. Write r = a/b

and s = c/d, where b and d are positive integers and a and c are nonnegative

integers. Assume that the fractions are written in reduced form. By inter-

changing the roles of r and i, if necessary, it may be assumed, without loss of

generality, that b < d.

If r = 0 or 1, then every closed-open set in X has ft(r)-measure 0 or 1; and

if ft(i) and fi(r) are topologically equivalent, then every closed-open set in X

also has fi(.ï)-measure 0 or 1. It follows that s = 0 or 1. Having disposed of

this trivial case, it may be assumed from here on that neither r nor j is 0 or 1.

Hence, 1 < b, 0 < a < b and 0 < c < d.

Suppose from now on that s =£ r and s ^ 1 — r. It will be shown then that

equation (2.5) cannot hold, and hence, that the two measures ft(r) and p(s)

must be topologically inequivalent.

Note that if c = d - c, then s = c/d = 1/2. Hence, d = 2, and since

\<b<d,b — 2 also. But then a = 1 and r = 1/2. Thus, c ¥=d - c, and, by

interchanging the roles of s and 1—5, if necessary, it may be assumed,

without loss of generality, that c < d — c.

It is being assumed throughout that b < d. From here on the proof splits

into two cases: case 1 when b = d, and case 2 when b < d.

Suppose that b = d. If it were true that a = b — a, then r = a/b = 1/2.

Hence, d = b = 2, and since 0 < c < d, it would follow that c = 1 and

therefore j = 1 /2. Thus, a ¥= b — a and, by interchanging the roles of r and

1 - r, if necessary, it may be assumed that a < b - a. Also, if it were true

that d - c < a, then d — c < b - a, and as c < d — c < a, it would follow

that d = c + (d — c) < a + (b — a) = b. But b = d. Consequently, a <d —

c. Finally, observe that under the assumption b = d it is not possible to have

a = c, as this would entail that s = r.

Lemma 4.1. If b = d, c < d — c and a < d — c, then there cannot exist

nonnegative integers b0, bx, . . . , bm(m > 1) with b0 = 0 or 1 such that

a      , [c\m      , i c\">-U d - c\ ,   ld-c\m       ,, ,.

Proof. Assume that, for some choice of integers, (4.1) holds. Then, upon

clearing denominators,

adm~x = ¿>0cm + bxcm~x(d - c) + ■ ■ ■ +bm(d - c)m. (4.2)
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As d = c (mod d - c), it follows from (4.2) that

acm-x~b0cm       (mod d - c). (4.3)

Since c/d is in reduced form, the integers c and d — c are relatively prime.

Line (4.3) can be divided by cm~ ' to obtain

a = b0c       (mod d — c). (4-4)

However, 0 < a < d — c, so that it is not possible for b0 to be 0. Thus,

¿0=1, but then a = c (mod d — c) is not possible either, as both a and c are

less than d — c and a ¥= c. This contradiction proves the lemma.

Assume now that b < d. Then the inequalities a > c and b — a > d — c

cannot both be true. Thus, a<c or b-a<d— c, and there is no loss of

generality in assuming that a < c, provided that it is not assumed also that

c < d - c as was done earlier.

Lemma 4.2. Let b < d and a < c. If a = bmb (mod c) and a = b0b (mod d

— c) with bm = 0 or 1, b0 = 0 or 1, then (i)bm = 1, (ii) a < d — c, and

(iii)b0 = 1.

Proof. If bm = 0, then a = kc for some positive integer k. Hence, a > c,

which contradicts the hypothesis. Therefore, bm = 1, thus proving (i).

It follows from (i) that b — a = jc for some nonnegative integer /. As

b ¥= a,j must be positive. Then b - a > c. If it were true that a > d — c, it

would follow that b = a + (b — a) > (d — c) + c = d, or b > d, contrary to

the hypothesis. Therefore, a < d - c, thus proving (ii). If b0 = 0, then a =

p(d — c) for some positive integer p. Hence, a > d — c, but this contradicts

(ii). So b0 = 1, and the lemma is proved.

Lemma 4.3. Let b < d and a < c. Then it is not possible to have a =b (mod

c) and a = b (mod d — c) simultaneously.

Proof. Suppose on the contrary that b = a + kc and that b = a + j(d —

c) for some nonnegative integers k and /. As b ¥= a, both k and / must be

larger than or equal to 1. Both inequalities c < d/2 and d — c < d/2 cannot

be true simultaneously.

Assume that c > d/2. If k > 2, then b = a + kc>a + d>d, or b > d,

which contradicts the hypothesis. Hence, k = 1. But then, c = kc = b — a =

j(d - c), so that d - c divides c. But c and d — c are relatively prime and

distinct. Hence, d — c = 1, which is impossible on account of Lemma 4.2(h)

and the fact that a is positive.

It must then be true that d - c > d/2. If/ > 2, then b = a + j(d — c) > a

+ d > d. But this contradicts the hypothesis. Thus, / = 1. Then d — c = j(d

- c) = b — a = kc, and c divides d — c. Again, c and d — c are relatively

prime and distinct. So, c = 1, which is impossible as a < c by hypothesis and

a is positive. This contradiction proves the lemma.
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Lemma 4.4. Let b < d and a < c. Then there cannot exist nonnegative

integers b0, bx, . . . ,bm(m > 1) with b0 = 0 or 1, bm = 0 or 1, such that

Proof. Assume that, for some choice of integers, (4.5) holds. Then, upon

clearing denominators,

dma = b0bcm + bxbcm-x(d - c) + ■ ■ ■ +bmb(d - c)m.        (4.6)

As d = c (mod d — c) and d = d — c (mod c), it follows from (4.6) that

cma = b0bcm       (mod d - c) (4.7)

and

(d - c)ma = bmb(d - c)m       (mod c). (4.8)

Since c and d — c are relatively prime, (4.7) can be divided by cm and (4.8)

by (d - c)m to obtain

a = b0b       (mod d - c) (4.9)

and

a = bmb       (mode). (4.10)

Then, by Lemma 4.2, b0 = bm = 1 and thus a = b (mod c) and a = b

(mod d — c). However, by Lemma 4.3, these two congruences cannot hold

simultaneously. This contradiction proves the lemma.

Lemmas 4.1 and 4.4 show that if s ¥= r and s ¥= I — r, then equation (2.5)

does not hold. Consequently, the measures ft(r) and fi(s) are not topologically

equivalent. Theorem 3.3 has been proved.
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