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DIOPHANTINE INEQUALITIES
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Abstract. Let Xx.X8 be any nonzero real numbers such that not all \j are of

the same sign and not all ratios ^/A^ are rational. If n, a are any real numbers

with 0 < a < 3/70 then |n + 2j_, ^n?| < (max n¡)~" has infinitely many solu-

tions in positive integers n,.

1. Introduction. Throughout tj is any real number and Xx, . . ., Xs are any nonzero

real numbers such that not all Xj are of the same sign and not all ratios Xj/Xk are

rational. Improving a result of Davenport and Heilbronn [4], Davenport and Roth

[5, Theorem 2] proved:

Theorem DR. For any e > 0 the inequality |n + 2j_] Xjnf\ < e has infinitely

many solutions in positive integers n¡.

Furthermore, Baker [1] proved that for any positive integer N the inequality

|2j_i XjPj\ < (max logpf)~N has infinitely many solutions in primes />.. Results in

[4] and [1] were improved and generalized by Danicic [3], Schwarz [9],

Ramachandra [8], Vaughan [10], Lau and Liu [6a], [7]. In particular [7, Theorem 2]

if

0<a < (V2Ï - 1)/15360 (1.1)

then the inequality |ij + "2%i Xjpj\ < (maxpj)~a has infinitely many solutions in

primes/»,. In this paper we shall prove:

Theorem. If0<a< 3/70 then

8

V + 2  \*j
j--

<(max«,)"a (1.2)

has infinitely many solutions in positive integers n¡ and no component nj is bounded

above.

Our Theorem is an improvement of Theorem DR in the error term e. Also,

a < 3/70 is a more desirable result since it is analogous to (1.1). Furthermore the

error term in (1.2) is of the right order of infinity. Indeed we may let 17 = 0, X x be

irrational and all other Xj be integers then (1.2) implies that |X, + (5¡j_2 \¡nj)/n\\

< nx~3~a has infinitely many integer solutions n\. So in view of Dirichlet's theorem

[6, Theorems 193 and 194] we see that the order of infinity of the error term in (1.2)

cannot be improved further except the bound of a.
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The proof of our theorem follows the basic format of the Davenport-Roth

argument [5, §4]; the improvement results from a more careful treatment of the

minor arcs (Lemma 9, cf. Lemma 13 of Cook [2]). An alternative method of

proving (1.2) with a positive a was outlined by Vaughan [10, p. 177].

Following exactly the same argument as that of the proof of our theorem, we can

improve the results in [2] by replacing the e in Theorems 1 and 2 of [2] by

(max1<y<6 Xj,y)~ß and (max1<y<4 xJ,yx,y2)~ß respectively, where 0 < ß < 1/35.

We shall omit the proof of these results.

The authors wish to thank the referee for his helpful suggestions which brought

improvement to the presentation of this paper.

2. Notation and definitions. Let e be any sufficiently small positive number and x

a real variable. Write e(x) = exp(/27rx). By n, with or without suffices, we denote

positive integers. By the given hypotheses on Xj we may assume (cf. [2, p. 143, §2])

Xx/X2 < 0 and irrational. (2.1)

Then by Theorem 183 in [6] there are infinitely many convergents a/q with 1 < q

and

(a, q) = 1,        IVXj - a/q\ < 1/ (2q2)- (2.2)

Let X be large so that

X = q2'\ (2.3)

Ij = Ij(x) = f2'jX e{Xjxy>) dy       (j = 1, 2), (2.4)

Sj = Sj(x) =

2        e{XjXn3)        (j = 1, 2, 3, 4),
vjX <n < IvjX

2 e(XjXn3)    (j = 5, 6, 7, 8),
X4/5<n<2XV5

(2.5)

where

vx = 1,       v2 =|VA2|1/3,       "3 =|V(32A3)|1/3,       v, =|X1/(32A4)|1/3.

(2.6)

Trivially,

\Ij\ < vjX       0=1, 2),       | Sj\ < VjX       (j = 1, 2, 3, 4),

|S,|<*4/5       (y = 5,6,7,8). (2.7)

Put

8 8

V(x) = u  Sj(x),       W(x) = 7,(x)/2(x) II  Sj(x). (2.8)
7-1 7-3

We dissect the real line into four regions as follows.

e, = {x: |*| < \X2\~xX-2-<),    ©2 = {x: \X2\~XX-2- <|x| < X^},

e3 = {x:X3/1° <\x\<X),        ©4= {x:X <\x\).
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For the given positive a < 3/70 let

M = 2Í max   k),       t = (MX)'", (2.10)
Vl<7<4    J/

is í  \      I u2 if x = 0, ,_ ,, v#„(.*•) = { (2.11)
( (sin(wMx)/ (wx))      otherwise,

where u = t or 1. Trivially,

/£,(*) < t2. (2.12)

If <7 > 0, we use V « i/ (or £/ » F) to denote | K| < A U, where .4 is some

positive constant which may depend on Xj, e and tj only.

3. The region ©,.

Lemma 1. For any real y,

C e(xy)Ku(x) dx = max(0, u - \y\).
•'-oo

Proof. It follows from (2.11) and Lemma 4 in [4] by a simple substitution.

Lemma 2. For x G ©,, Sj(x) = //*) + 0(1) (j = 1, 2).

Proof. This is essentially the corollary to Lemma 11 in [5].

Lemma 3. If x =£ 0 then Ij(x) «: X'2\x\~xforj - 1, 2.

Proof. By (2.4) the lemma follows from integration by parts.

Lemma 4.

f   V(x)e(xr1)KT(x) dx = [°°   W(x)KT(x) dx + 0(t2X21/5~').
Je, •'-oo

Proof.   Note   that   e(xr¡) = 1 + 0(\x\)   and   SXS2 - IXI2 = SX(S2 - IJ +

(Sx - IX)I2. Then by (2.8), Lemma 2, (2.7) and (2.9),, for x£g,we have

8 ft

V(x)e(xi)) - W(x) = (SXS2 - IXI2) II  Sj + 0(\x\) R Sj « X3X'\   (3.1)
J-3 J-l

By (3.1), (2.12) and (2.9),, we see that

f I F(x)e(*Tf) - W(x)\KT(x) dx < t2^31/5 [  dx <& r2X2l/5~'.        (3.2)
•'e, %,

On the other hand, by Lemma 3, (2.8)2, (2.12) and (2.9),,

f       W(x)KT(x)dx<^r2X2+X6/5[      (X2\x\y2dx<ZT2Xl6/5+'.     (3.3)
•'xee, Jxe<$i

Lemma 4 follows from (3.2) and (3.3).

Lemma 5. ¡e¡ V(x)e(xt\)KT(x) dx » t2X2x/5.
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Proof. Let

S = {n = (n3, . . ., h8): VjX < nj < lVjX (j = 3, 4),

X4'5 < tij < 2X4'S (j = 5, 6, 7, 8)} (3.4)

and <b = A, yx + X2y2 + 2®_3 A,«,3 where vy are real. It follows from (2.8)2, (2.4),

(2.5) and Lemma 1 that

f°°   W(x)KT(x) dx
J -00

=   2    i"**' [*Xlh-2{yiyJ-2/3r  e(x<b)KT(x)dx}dyxdy2
nes8 •'"ix3    •'x3    I •'-oo J

» X "4 2    f8^3 f **3 max(0, t - |*|) dyx dy2. (3.5)
ne®   ■/i.3X3      •'x3

If S^f*3 < v2 < óí'lA'3, n G 93 and |</>| < t/2 = o(\), then in view of (2.1), (3.4)
and (2.6),

yx =|A2/A,|72 - (VA,)*3 - (A4/A,K3 - 2 (VA,)«/ + <p/A,
7-4

< Ó^IlV^il-*"3 +|VAi|8f33^3 + \X4/Xx\Sv¡X3 + o(X3)

= 6*3 + A-3/4 + ^3/4 + o(X3) < SX3.

Similarly we have v, > 3X3 - X3/4 - X3/4 + o(X3) > X3. So by (3.5) and (3.4),

C   W(x)Kr(x) dx » X "4 2    f6"2^3 fT/2 (t/2) <ty 4-2 » t2A-2'/5.
•'-oo „633  J3i$X3    •'-t/2

This together with Lemma 4 proves Lemma 5.

4. Some elementary lemmata. For 7 = 1, 2, 3, 4 and k = 5, 6, 7, 8 let

*(*. A) - T \Sj(x)\g\Sk(x)\hKx(x) dx,
•'-oo

¿(*, A) = r \Sj(x)\s\Sk(x)\hKr(x) dx. (4.1)
•'-oo

Lemma 6. AT(2, 4) « A-13/5+£ am/ tf(4, 4) «: ^21/5+e.

Proof. These are essentially Lemmata 8 and 10 in [5] respectively.

Lemma 7. L(2, 4) « tX 13/5+£ and L(4, 4) « tX2x/5+'.

Proof. For the given j, k implied in L(2, 4) let

© = {{ = (nx, ..., n6): VjX < nx, n2 < lVjXt X4'5 < n3, . . ., n6 < 2X4/5}

and *(£) = Xj(n3 - /if) + A^n3 + n\ - n\ - n\). By Lemmata 1, 6 and t < 1, we

have

L(2, 4) = 2    C e(x*(Ö)/C(x) dx = 2   max(0, t -|*(f)|)
£e© ■'-oo (e®

< t 2   max(0, 1 - |<K£)|) = rK(2, 4) « tXX3/5+°.
fe©
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The inequality for L(4, 4) is proved similarly.

Lemma 8. Forj = 1, 2 let XjX = ßy + a,/<¡r,, where ajy q¡ are integers with (ap qj) =

l.Ifßj«. q-xX-2-\then

(a) Sj(x) « qf '/^niA-, X ~2\ ßj\ ~x) when 1 < qj < Xx ~\

(b) Sj(x) « X3/A+° when Xx~e < qj < X2+e.

Proof. Parts (a) and (b) are essentially Lemmata 11 and 12 in [5], respectively.

Lemma 9. Let p, a be any constants such that — 2 — e < p <a and 0 < a. If

\X2\~XXP <\x\<X" (4.2)

then min(|S,(;c)|, |52(x)|) « x3/4+t+a/6.

Proof. This is a generalization of Lemma 13 in [5]. By Theorem 36 in [6], for

each x satisfying (4.2) there are integers a-, q} (j = 1,2) with (a,, q) = 1 such that

Kqj <X2+°,       \qjßj\<X-3-, (4.3)

where

ßj = XjX - aj/qj. (4.4)

We see that a2 ¥> 0. For if a2 = 0 then by (4.4) and (4.3), |À2x| = \ß2\ < X~2''.

This contradicts (4.2).

If max(^,, q2) > Xx~' then Lemma 9 follows from Lemma 8(b). Suppose that

max(^,, q2) < Xx~e. Then Lemma 9 follows from Lemma 8(a) unless the bound of

Sj(x) in Lemma 8(a) is > x3/4+e+a/6 for bothy = 1, 2. If so then for bothy- =1,2

we have

qj<X3/4-3e-a/2      and      ^<q-i/3x-U/4-e-a/6 ^

By (4.4), (4.5) and (2.3),

\(XX/X2)a2qx - axq2\ = qxq2\(Xx/X2)(X2x - ß2) - (Xxx - /3,)|< qxq2(\ßx\ + \ß2\)

« (q2x/3q2 + #%)X-XX'*-™I* ^X-3'2-**-* < 1/ (2q).

(4.6)

Now for any integers a', q' with 1 < q' < q, it follows from (2.2) that

q t-- a
,    a'q - aq'\       a      Xx \        I   1 1   \       1

\     qq q    K \qq     2q2 /    2q

Put q' = \a2qx\ and a! = ± axq2. We see that q' > 1 as a2 ¥= 0. So it follows from

(4.6) and (4.7), that

|fl2?,| > q. (4.8)

On the other hand, by (4.4), (4.5), (4.2) and (2.3),

|fl29i| = «ifcl V - &| « X3/2-6»-^" < 9. (4.9)

This proves Lemma 9 since (4.8) contradicts (4.9).
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5. The regions Gr2, ©3 and Gr4. Let

Fx(x) =\SXS5S6\2,       F2(x) =\S2S$S6\2,       F3(x) =|S3S4S7S8|2      (5.1)

and 911 = supxe2 min(|S,(x)|, |S2(x)|) where 8 is some region in the real line. By

(2.8), and Holder's inequality we have

f\V(x)\KT(x) dx < 9H 2    Í   II \Sj(x)\KT(x) dx
JS m = l   -'S j*m

< ^ 2 (J[ *•„,(*)*,(*) ̂ )1/2(/s *>(*)*;(*) ^)1/2-   (5-2)

Lemma 10. /eJ K(x)|/c~T(x) dx « T;r291/70+2e.

Proof. By (5.1), (4.1) and Holder's inequality we have

f   Fm(x)KT(x) dx « L(2, 4)        (m = 1, 2)    and     f   F3(x)tfT(x) dx « L(4, 4).
•% •/e2

Then by (5.2), Lemma 9 (with p= - 2 — e, a = 3/70) and Lemma 7 we have

f   | F(X)|/Ç(X) ¿X « A'3/4 + e+l/140(TX17/5 + e) <<; ̂ 291/70+2.

This proves Lemma 10.

Lemma 11. Let F(x) = 2 e(xf(zx, . . . , zp)) where f is any real-valued function and

the summation is taken over any finite set of values zx, . . . ,zp. Then for any

B > 4/t,

[       \F(x)\2KT(x) dx « (tB)~x C |F(x)|2tfT(x) dx.
J\x\>B •'-oo

Proof. This is essentially Lemma 2 in [5]. See also Lemma 16 in [7].

Lemma 12. /gJ V(x)\KT(x) dx «: Ar288/70+3e.

Proof. Let 90 = 3/70 and 9n = 6e + 9n_x. Since 9n -> oo as n -» oo we may let

N be the greatest positive integer such that 9N_X < 1. Take 9N = 1. For each n < N

put ß„ = {x: X9-' < |x| < Xe"). By Lemma 11 (with B = Ar*—) and an argument

similar to that in Lemma 10 we have for m = 1, 2

/ Fj*)^(*)d*<(T*M_ir ^,(*)A;Wáx«(TJf,!-')-IL(2,4)
^ "'-oo

as by (2.10) A"*-' > A-3/70 > 4/t. Similarly we have

f  F3(x)/Ç(x) ax « (t^9"')_'L(4, 4).

So by (5.2), Lemma 9 (with p = 9n_x — e, a = 9n) and Lemma 7 we have

[ \V(x)\KT(x) dx « X3/4+t+9"/6(rXe"-')-xL(2, 4)1/2L(4, 4)1/2

< X3/4 + 2e-5«„_t/6T-l/TXn/5 + ^ < ^83/20 + 36-590/6

^ j^ 288/70+ 3e
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Since U^_i ß„ = ©3, Lemma 12 follows.

Lemma 13. fSt\V(x)\KT(x) dx «XX6/5+e.

Proof. By (2.8),, (2.9)4, Holder's inequality, Lemma 11 (with B = X) and

Lemma 7 we have

f \V(x)\KT(x) dx

«If       \SxS2S5S6\2KT(x)dx)    If      \S3S4S7Ss\2Kr(x)dx)
V\x\>X J       \J\x\>X )

« (tAT'L(4, 4) « (tA')-1tA'21/5+£ « Xl6/5+t.

This proves Lemma 13.

We come now to prove our theorem. For the given a let e > 0 satisfy a + 2e <

3/70. Then it follows from Lemmata 5, 10, 12 and 13 that

f°° V(x)e(xi))Kr(x) dx » r2X2x/5.
•'-oo

By Lemma 1, (2.5) and (3.4) this integral is

2 max
ne»

PjX<nj<2»jXJ=l,2
(*

2 V*
7-1

<T%,

where 9t is the number of solutions (nx, . . . , wg) of (1.2) with nx, . . ., ns lying in

the   same   range   as   in    the   last   summation   since   by   (2.10)   t <

M_a(max1<y<8 Hj/'M)~a. This completes the proof of our theorem.
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