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FINITE-DIMENSIONAL BANACH SPACES WITH A.E.

DIFFERENTIABLE METRIC PROJECTION

THEAGENIS ABATZOGLOU

Abstract. We prove that in a finite-dimensional Banach space, where the Hessian

of the norm square is positive definite on the whole space, except possibly at 0, the

metric projection onto any closed set is differentiable a.e.

1. Introduction. Asplund in [2] proved that in any Euclidean space the metric

projection onto a closed set is differentiable a.e. In the last paragraph of the same

paper he asks whether this behaviour of the metric projection can be generalized to

other norms.

We expand his approach and generalize his result to spaces where the Hessian of

the square of the norm is positive definite in the whole space, except at the origin

where the Hessian may not exist.

2. Definitions. Let B be a finite-dimensional Banach space and M a closed subset

of 5.

The metric projection P of B onto M is a map, possibly multivalued, defined by

inf   ||x - m|| = ||* - P(x)||.
mBM

3. Differentiability of the metric projection. We prove a few lemmas to establish

some preparatory and useful properties of the metric projection.

Lemma 1. Let F(x) = \\x — P(x)\\. Then F is Lipschitz continuous and therefore

Fréchet differentiable a.e. on B.

Proof. F(y) — F(x) = \\y — P(y)\\ - \\x - P(x)\\ and without loss of general-

ity assume F(y) - F{x) > 0. Then

\F(y) - F(x)\ = HI v - P(y)\\ - \\x - P(x)\\\

< \\\y - P(x)\\ - \\x - P(x)||| < ||y - x||.

The lemma now follows from the classical theorem of Rademacher and Stepanoff

[4, p. 216].

Lemma 2. // F is Fréchet differentiable at x = P(x) then V ||jc — P(x)|| = 0 at

x = P(x).

Proof. For any y G B consider

H* + fr - P(x + ty)\\ - \\x - f (s)|| _\\x + ty- P(x + ty)\\
t t
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Since \\x + ty - P(x + ty)\\ > 0 we get

0 = Hm   F(x + ty)~ F(x) _v      _ ^jii^j    for all>, e 5
/->o t

Therefore V ||jc — P(x)\\ = 0.

Lemma 3. If F is Fréchet differentiable at x = P(x) then P'(x) = /, the identity

map.

Proof. By Lemma 2, V ||jc — P(x)\\ = 0 at x = P(x), i.e.,

lim ||je + ty - P(x + ty)\\/t = 0   for all v E B,
r->0

therefore

x + ty - P(x + ty) = o(|/|)

and

-| P(x + /y)l,-o = v.

Theorem 1. ¿> « differentiable a.e. on B if and only if P is differentiable a.e. on

Mc (the complement of M in B).

Proof. Follows easily from Lemmas 1 and 3.

From now on we will concentrate on the function F(x) = ||jc — P(x)\\ on Mc

and prove that F2(x) is twice differentiable a.e. and from this it will follow that P is

differentiable a.e. on Mc.

Lemma 4. // F is Fréchet differentiable at x then F'(x) = (x — P(x))*, where

(x - P(x))* is the support functional to x — P(x).

Proof. Let y = (x - P(x))/\\x - P(x)\\. When t < 0 and sufficiently close to 0

it is clear that P(x + ty) = P(x). We then have

F(x + ty)- F(x) _ \\x + ty - P(x)\\ - \\x - P(x)\\

t t

and

F>(x)(y) = lim    "* + » - *'>» - I'" - **>» = (x - P(x))*(y)
<->o~ t

= (x- p(x)r * ~ %*{. = i.
II* - p(x)\\

Now F'(x) is a linear functional of norm at most 1 because, by Lemma 1,

\F(y) - F(x)\ < || v - jc||. This means that F'(x) is a support functional to x —

P(x).

Since the norm in B is differentiable, support functionals are unique so that

F'(x) = (x - P(x))*.

Corollary 1. P is uniquely defined a.e. on B.
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From now on we will assume that G(x) = 2\\x\\2 is twice Fréchet differentiable

for all x ¥= 0 and that G "(x) is positive definite for all x ¥= 0 in B. This has the

following consequence.

Lemma 5. G" satisfies the following inequality for all x,y in B, x i= 0 and some

m,M>0:

m||y||2<G"0)(y)(2)<M||y||2.

Proof. G is homogenous of degree 2, therefore G" is homogenous of degree 0.

For any x,y in B with ||x|| = 1, ||y|| < 1 by the compactness of the unit ball in B

and the continuity of G " we obtain

and

0<m=   inf    G"{x){y)w,
11*11- i
lb-ll-1

sup   G"0)(y)(2) = M < oo.
11*11-i
IMI = i

Now since G" is homogenous of degree 0 it follows that for every x, y in B, x ¥= 0,

we have

,(2)m||y||2 < G"0)Or < M

Lemma 6. For any x, y, z in B we have the inequality

M
2\\x + z||2 + 2||y + z||2 -\\x+y + 2z||2 < — (2||x||2 + 2||y||2 - ||* + y||2).

Proof. Let H(t) = 2\\tx + (1 — O^ll2- By Taylor's theorem with remainder we

get

7/(1) + H(0) - 27/(1/2) = f1/2 tH"{t) dt + C (1 - t)H"(t) dt.       (1)
•'0 •'1/2

Now //"(/) = G"(y + t(x - y))(x - y)(2) and

H(l) + H(0) - 27/(1/2) = 2||x||2 + 2||y||2 - ||* + y\\2,

so that if we use Lemma 5 on (1) we obtain

\ m\\x - y\\2 < 2||x||2 + 2||y||2 - ||* + y||2 < \ M\\x - y\\2.

Observe that if tx + (1 — t)y = 0 for some t, the above inequalities still hold

because m < 4 and M > 4. Lemma 6 follows easily from this last inequality.

Theorem 2. Let M be a closed set in B. Then P is Fréchet differentiable a.e. on B.

Proof. Consider the function K(x) = C\\x\\2 - \\x - P(x)2\\ where C = M/m.

K is clearly continuous, so to prove K is convex it is enough to show K is midpoint

convex. The condition for this is

C||x+y||2- ||x+y-PO+y)||2

< ¿[C||2*||2 - ||2x - P(2x)||2 + C||2y||2 - ||2y - P(2y)||2].
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If we let P(x + y) = -2z it is enough to show

2\\x + z\\2 + 2|| v + z||2 -\\x+y+ 2z\\2 < C(2\\x\\2 + 2\\y\\2 - \\x + y\\2).

However this last inequality is true by Lemma 6. By Alexandrov's Theorem (see [1]

or [3, p. 24]), K has a second differential a.e. on B. This means that for almost all x

in B we have

K(y) = K(x) + K'(x)(y - x) + | K"(x)(y - x){2) + o(\\y - x\\2).      (1)

In particular this implies that if K'(y) is a subdifferential of K at y then

K'(y) - K'(x) = K"(x)(y - x) + o(\\y - x\\). (2)

A proof of (2) was cordially communicated to us by Professor Simon Fitzpatrick

and it goes as follows.

From equation (1) we have, for every e > 0, a 8 > 0 such that if || v — jc|| < 8

then

\K(y) - K(x) - <K'(x),y - x)-{-(K"(y - x),y - x)\ < e\\y - x\\2.    (3)

Take z, w in B with ||z|| = ||w|| = 1 and let 0 < |i| < 8/2 and a = Ve |f|. Suppose

K'(x + tw) is a subdifferential of K at x + tw. Then

(K'(x + tw), az} < K(x + tw + az) - K(x + tw)

and by (3) (assuming e < 1),

K(x + tw + az) < e4|i|2 + K(x) + <#'(*). tw + az)

+ \(K"(x)(tw + az),tw + az)

and

K(x + tw) > -e\t\2 + K(x) + (K'(x), tw) + \{K"(tw), tw).

Combining the last three inequalities we obtain

(K'(x + tw), az) < 5e|i|2 + (K'(x), az) + {-(K"(x)(tw), az)

+ \{K"(x)(az), tw) + \{K"(x)(az), az)

= (K'(x), az) + (K"(x)(tw), az) + 5e\t\2 + \a\K"(x)(z), z).

Now since a = Ve |i| we have

(K'(x + tw)- K'(x) - K"(x)(tw), z) < 5VI \t\ + {■ Vi \t\(K"(x)(z), z)

which is equivalent to

\\K'(x + tw) - K'(x) - K"(x)(tw)\\ < {5+i-\\K"(x)\\)Ye \t\ = o\t\.

This completes the proof of (2).

We now proceed with the rest of the proof of Theorem 2. Observe that whenever

K is differentiable, Lemma 4 implies that

K'(x) = 2C||x||** - 2\\x - P(x)\\(x - P(x))*. (4)

In the case where P(y) is multivalued we may take P(y) E P(y). Then it is easy to

show that K'(y) defined by

K'(y) = 2C\\y\\y* - 2\\y - P(y)\\(y - P(y))* (5)
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is a subdifferential of K at v. Now let

D(x) = 2||x||x« = (||*||2)'.

By hypothesis D'{x) exists and is invertible for all x in B. Then by (1) and (4) we

have a.e. in B,

P(x) - x - D -'(2C||jc||jc* - K'(x)).

We also have for any P( v) G P(y),

P{y) = y - D-\2\\y\\y* - K'{y)).

Then from the last two equalities, equation (2) and the assumption on D we obtain

that P'O) exists a.e. in B in the sense that

||P(v) - PO) - P'0)(y - x)|| = o\\y - *||    a.e.
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