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A SIMPLE C*-ALGEBRA WITH NO NONTRIVIAL PROJECTIONS

BRUCE E. BLACKADAR

Abstract. A C*-algebra is constructed which is separable, simple, nuclear, non-

unital, and contains no nonzero projections. Some results on automorphisms of AF

algebras are also obtained.

A C*-algebra is said to be projectionless if it contains no projections other than 1

(if present) and 0. It has long been an open question whether there exists a

projectionless simple C*-algebra (see [13, p. 18], [6, 1.9.6], [8, p. 81], [14, p. 242]). In

this paper we construct a projectionless simple separable nuclear nonunital C*-al-

gebra.

It is quite possible that the methods of this paper can be modified to yield a

projectionless simple unital C*-algebra. It is conjectured that the C*-algebra

generated by the regular representation of the free group on two generators (known

to be simple and unital) is projectionless.

1. Outline of construction. The general method of construction is motivated by

the construction of the Bunce-Deddens weighted shift algebras [5] as described by

Green [12, p. 248]. The algebra A is constructed as an inductive limit of C*-algebra

An, each of which is a continuous field algebra on a circle T with a constant simple

fiber B with the embedding <bn: An^>An+x inducing the "twice around" map

z -» z2 of T onto T.

The algebra B will be the (unique) simple unital AF algebra whose ordered

group K0(B) is isomorphic to the additive group of real algebraic numbers [10, 2.2].

B has the following properties:

(1) B has a unique normalized trace t, which is faithful.

(2) If p and q are projections in B, thenp ~ q if and only if r(p) = r(q).

(3) If A is any algebraic number with 0 < À < 1, then there is a projection p E B

with t(p) = X.

(4) If p is any nonzero projection of B, then pBp =^ B.

(The fact that B satisfies (l)-(4) follows easily from the results of [2, §3].)

If a is a nonzero endomorphism of B, define A(a) to be the C*-algebra of

continuous functions /:   [0, 1]^>B  such  that /(l) = a(/(0)).  Primea)) = {/,:

0 < t < 1}, where J, = {/ E A(o): f(t) = 0}, and Pnm(A(a)) is homeomorphic to

a circle under the identification /, <-> e2ml.

PROPOSITION 1.1. A(a) is projectionless if (and only if) o(l) j= 1.
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Proof, t ° o is a trace on B, so t ° a = Xt for some X, 0 <X < 1, and A = 1 if

and only if o(l) = 1. If /is a projection of /1(a), then/(r) is a projection of B for

each /. If /, and t2 are sufficiently close, then ||/(i,) - fit2)\\ < 1, so/(/,) ~fit2) by

[11, Lemma 1.8], and thus r(/(i,)) = rifiQ). Therefore t ° /: [0, 1]^[0, 1] is

continuous and locally constant, hence constant. But t °/(l) = X(t °/(0)), so

either X = 1 or t ° f = 0. (Alternate proof that t ° / is constant: it can take only

algebraic values.)

The algebras An will be A(an) for appropriately chosen nonunital endomorphisms

o-„. The idea is the following. Let A(a„) be given, and suppose an(l) = p with

0 < A = r(p) < 1. Set ¡i = A1/2/(l + X,/2), and let q, r be projections of B with

r(q) = ¡i, r(r) = X(l — ft), and q±r. Set s = 1 - q - r. Then B ~ 9P9 and B ^

(1 - q)B(l - q), and the second isomorphism can be chosen to identify/? with r.

With these identifications, we can define <i>: An -» C([0, 1], B), as follows:

fit/2) 0 0
[</>(/)](') =       0        /((/ + l)/2)

0

where elements of B are written symbolically as a 3 X 3 matrix:

qxq     qxr     qxs

X <r+ rxq     rxr     rxs

sxq     sxr     sxs

[<H/)](0) =
/(0)        0        0

0      /(1/2)
0

,    [<K/)]0) =
/(1/2) 0 0

0 /(0) 0
0 0      0

Now P ~ (9 + r)B(q + r), and the isomorphism can be chosen to identify q with

r, since Â(l - ¡i)/'¡1 = ju/(l — ¡i). Therefore, there should be an isomorphism on+1

of P onto (q + r)B(q + r) such that a„ + 1([<í»(/)](0)) = [<¡>(f)](l).

There are some technical problems with this approach, so the actual construction

uses a slightly modified approach.

2. Automorphisms of AF algebras. In this section we obtain a result about

automorphisms of certain simple AF algebras, which is perhaps of independent

interest, and which will be used in the construction.

Lemma 2.1. Let D be an AF algebra, C a finite-dimensional C*-subalgebra of D.

Then the commutant R of C in D is an AF algebra. In fact, if D = [(J Dn]~~ with

each Dn finite-dimensional and C = 73,, then R = [U P„]~, where Rn is the corn-

mutant of C in Dn.

Proof. It may be assumed without loss of generality that D is unital and C is a

unital subalgebra. If/»,, . . . ,pn are the minimal central projections of C, then every

element of D can be written as an « X « matrix (xA where x« G p¡Dpj. The

elements of C are "diagonal" matrices, and a routine argument shows that any

element of P must also be diagonal, with the z'th block in the commutant of p¡Cp¡ in

p¡Dp¡; and any such matrix defines an element of P. Thus P ~ 0 "_,/»,P<p,, and so
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by restricting top¡Dp¡, it suffices to assume that C is a full matrix algebra in D. But

then D cz C <8> R in standard fashion, and the result follows.

The next lemma is a slight variant of [3, Lemma 2.4] and [9, Theorem 3.8].

Lemma 2.2. Let D be a simple unital AF algebra with K0(D) totally ordered; and

let a be an automorphism of D, and let C be a finite-dimensional C*-subalgebra of D.

Then there is a unitary u E D with a(c) = ucu* for all c E C.

Proof. The hypotheses imply that D has unique normalized trace r and

p ~ 9 <=> t(p) = r(q). Thus p ~ a(p) for all projections p E D. As in [3] let ejV be

a set of matrix units for C, and f¿¡k) = a(e¡J<)). Then eff ~/f1) for each k via a

partial isometry wk. Let u = '2k2,iff\k)wke\*).

Theorem 2.3. Let D be a simple unital AF algebra with K0(D) totally ordered.

Then Aut(D) is path-connected in the topology of pointwise (norm-) convergence. In

fact, if a0 and ax are automorphisms of D, there is a norm-continuous path (u,)

(0 < t < 1) of unitaries of D such that, if a, = ad u,, then (a,), 0 < t < 1, is a

continuous path of automorphisms from a0 to ax.

Proof. Write D = [U Dn]~ with Dn finite-dimensional and Dn C Dn+X. Let a be

an automorphism of D. We will find a path from a to the identity automorphism.

Let », -» 1, and for each n > 1, let u„ be a unitary of D with ad un = a on Dn.

Connect un and un + l by a path as follows. u*un+x is in the commutant of Dn, which

is an AF algebra and thus has a path-connected unitary group. For n < / < n + 1,

define a continuous path {v,} of unitaries in the commutant of Dn with vn = 1 and

vn+\ = u*un+v Set u, = u„v,. Then (ut) (n < / < n + 1) is a continuous path from

m„ to u„+l, and ad w, = a on Z)„. For 0 < t < 1, define a, = ad «,/,. Thus, as t -»0,

a, —» a pointwise on U Dn, hence everywhere since ||a,|| = 1 for all t.

Remark. The conclusions of 2.2 and 2.3 can be false if K0(D) is not totally

ordered. For there exists a simple unital AF algebra D with exactly two normalized

extremal traces, and an automorphism a of D which interchanges the two traces.

Then a is not in the connected component of the identity in Aut(Z)) and cannot be

unitarily implemented on every finite-dimensional subalgebra. Also, by [9, 3.8 and

3.9], if M is a simple unital AF algebra which is not UHF, then the inner

automorphisms are not dense in Aut(Af®A/).

3. Construction of A. Let B be the AF algebra defined in §l,p, a projection in B,

0 < A, = t(pi) < 1, and a, an isomorphism of B onto pxBpv Let Ax = A(ox).

Inductively define An and a„: An -» An+X as follows. Suppose Ax, . . . ,An have been

defined, with An — A(a„), a„ an isomorphism of B ontop„Bp„, 0 < \, = r(p„) < 1.

Letp = p„, X = X„. Let ju,, q, r, s be as in §1. Choose a fixed isomorphism an+, of B

onto (q + r)B(q + r) such that on+x(q) = r. This is possible because r(a„ + x(q)) =

[¡i + X(l - ¡i)]n = X(l - n) = r(r). Set An+i = A(an+X). on+x induces isomor-

phisms a: qBq -» rBr and ß: (1 - q)B(\ - q)-+ qBq by restriction. Let y: B -»

qBq and 8: B -> (1 - q)5(1 - q) be arbitrary isomorphisms, with 8(p) = r. This is

possible since r(8(p)) = X(\ — ¡i) = r(r).
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Let 9, be a pointwise-continuous path of automorphisms of qBq with 90 =

identity and 0, = ß ° 5 » y-1 (Theorem 2.3). Let w, (0 < / < 1) be a continuous

path of unitaries in rBr with w0 = r, such that ad w, converges pointwise to

a ° y ° o~l ° 8 ~l\rBr as t —* 1. Let w, = u>, + j. Then u, is unitary in (1 — q) •

B(\ - q). Set 77, = ad u, (0 < f < 1).

Now define </>„:/!„ -» /4M+, as follows.

[*„(/)](') =

(0, oY)[/(i/2)]

0

0

0

0,o5)[/((/-rl)/2)] if I < 1,

and

L>„(/)]0) =

(ßo8)[fil/2)]

0

0

(«

0

y)[/(0)]

0

(with B represented as 3 X 3 matrices as in §1). Since

K(/)](o) =
v[/(0)] o

0 5[/(l/2)]

0

<T«+i([^>/i(/)](0)) = [<#>„(/)](!)• It remains to prove that <p„(f) is a continuous function

on [0, 1]. The two diagonal blocks can be handled separately. In the lower block,

since r[<f>„(f)](t)s, s[<b„(f)](t)r, and s[<j>n(f)](t)s all approach zero as / -> 1, to prove

continuity at 1 it suffices to prove that r[^>n(f)](t)r -» (a ° y)[/(0)] as r-»l, i.e.

/'[<í>n(/)](')'' -* (« ° Y ° añ ')[/(!)]• Continuity of both blocks everywhere therefore

follows from the following lemma.

Lemma 3.1. Let D be a C*-algebra, g: [0, 1]—»£> a continuous function, w:

[0, 1]—» Aut(Z)) a path which is continuous in the topology of pointwise convergence.

Then h: [0, 1] -» D defined by h(t) = w,(g(Z)) « continuous.

Proof. Let e > 0, and ?0 G [0, 1]. Let 5 > 0 be such that ||g(i) - g(/0)|| < e/2

and ||w,(g(io)) - w,0(s('o))ll < e/2 whenever \t - t0\ < 8. Then ||to(g(/)) -

w(^('o))ll < e/2 for any automorphism w.

ll*(0 - A(io)ll < IMs(O) - «.(«('o))!! + ll",(g('o)) - «,0(g('o))ll <£

for |/ - f0| < 5.

For the next step in the induction, setpn+l = q + r,\,+l = n + X(\ — fi).

We now let A = lim {An, <f>„}.

Lemma 3.2. A is simple.

Proof. The closed ideals of An are in one-one correspondence with the closed

subsets of the circle, under the identification in §1. If / is a proper closed ideal of

A, set /„ = J n A„. Fix n with /„ i= A„. For each k, J„ = An n J„+k, and it follows

that the nonempty closed set of T corresponding to Jn is invariant under rotation
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by angle 2tr/2k. Since this is true for all k, the closed set is dense and therefore

Jn = {0}. This is true for all n, so / = {0} by [1, Lemma 4.5].

The fact that A is projectionless follows from the next proposition, which is well

known (cf. [7, p. 9], [8, p. 81]). The proof is a routine exercise, and is omitted.

Proposition 3.3. If D is a C*-algebra, the following are equivalent:

(1) D is projectionless.

(2) Every selfadjoint element of D has connected spectrum.

(3) There is a dense *-subalgebra D0of D, such that every selfadjoint element of D0

has connected spectrum (in D).

Corollary 3.4. Let D =lim{Da, \pa}. If each Da is projectionless, then D is

projectionless.

Proposition 3.5. A is nuclear.

Proof. Each An is an extension of C0(R) ® B by B, and is therefore nuclear.

Hence A is nuclear.

If K is the C*-algebra of compact operators, then it follows from the argument of

Proposition 1.1 that An ® K is projectionless for each n. Therefore A ® K is a

simple stable projectionless C*-algebra, and so any C*-algebra Morita equivalent

to A is nonunital and projectionless [4].

Added in proof. The author has constructed a unital projectionless C*-algebra

using the methods of this paper [15].
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