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UNIVERSALLY LUSIN-MEASURABLE

AND BAIRE-1 PROJECTIONS

ELIAS SAAB

Abstract. It is obvious that a dual Banach space E* is reflexive if and only if the

natural projection P from E*** to E* is weak* to weak continuous. In this paper it

is proved that the next best condition on P, namely that P is weak* to weak

universally Lusin-measurable is necessary and sufficient for E* to have the

Radon-Nikodym property. In addition we prove that if £ is any Banach space that

is complemented in its second dual by a weak* to weak Baire-1 projection, then E

has the Radon-Nikodym property. We also prove that if £ is a Banach space that

is complemented in its second dual E** by a projection P: E** -» E with

F= P~\0) weakly ^-analytic; then saying that £** has the Radon-Nikodym

property is equivalent to saying that P is weak* to weak universally Lusin-measur-

able.

Let us fix some terminology and conventions. All topological spaces in this paper

will be completely regular. The set of all Radon probability measures on a

topological space (X, t) will be denoted by M\(X, r).

Definition 1. Let (X, t,) and (Y, r2) be two topological spaces and let/: X -» Y.

(i) Let [t G Af\_(X, t,). The map/is ¡ti-Lusin-measurable if for every compact set

K in X and for every e > 0 there is a compact set Kt c K such that ju,(7v \ Ke) < e

and the restriction of/ to 7ve is continuous.

(ii) The map / is universally Lusin-measurable if / is /x-Lusin-measurable for

every ju G M\_{X, t,).

Definition 2. A topological space is AT-analytic if it is the continuous image of a

KaS subset of a compact space.

It is clear that a complete separable metric space is /¿-analytic and if E is a

Banach space, then (E*, o(E*, E)) is 7C-analytic because it is a Ka. Talagrand [11]

showed that a weakly compactly generated (WCG) Banach space is AT-analytic for

its weak topology.

Definition 3. Let E be a Banach space and W a subset of E. The set W is

weakly Tv-analytic if ( W, o(E, E*)) is Tv-analytic.

Definition 4. Let (X, t,) and ( Y, r2) be two topological spaces and let/: X -» Y.

The map /is Baire-1 if there exists a sequence (/„)n>1 of continuous functions from

(X, t,) to (y, t2) such that/O) = lim„/n(x) for every x G X.

Definition 5. Let £ be a Banach space and let (T, 2, X) be a probability space.

A function/: T ̂  E is Pettis-integrable if

(i) for every x* G E* the map / -» </(/)> x*> is X-measurable, and
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(ii) for every A in 2 there exists xA in E such that

(xA, x*> = [ </(/), x*> dX
■> A

for every x* in E*. In this case we write xA = Pettis-/^/ dX.

Definition 6. Let £ be a Banach space and let ( T, 2, X) be a probability space.

A function/: T^E is Bochner-integrable if there exists a sequence (/„)n>1 of

simple functions such that

(i) lim„ ||/(0 - /„(/)|| = 0 for X-almost all t E T, and

(ii) limj,. 11/(0- /„(Oil¿A = 0.
It is easy to see that one can define Bochner-/^ f dP = lim„ /^ /„ dX for each /I

in 2. This definition is independent of the choice of the sequence (f„)n>x. For more

details see [2, Chapter II].

Definition 7. A Banach space E has the Radon-Nikodym (resp. weak Radon-

Nikodym property) if for every probability space (T, 2, X) and every vector

measure m: 2 —» £ such that ||w(/l)|| < X(A) for every A E 2 there exists a

Bochner-integrable (resp. Pettis-integrable) function/: T-» E such that m(A) =

Bochner-f Af dX (resp. m(A) = Pettis-jAf dX) for every A in 2.

Let (X, t,) and (Y, t2) be two topological spaces, let p E A/|(A^, t,) and let/:

A" —> Y be a ¡u-measurable map. The measure /( ¡i) is defined on Borel sets of Y by

f(n)(B) = ¿t(/-'(£)). It is easy to see that/(ju) E Ml+(Y, t2).

The following theorem of P. A. Meyer [9, p. 126] is used in the sequel.

Theorem 8. Let tx and t2 be two topologies on a set X. If t2 is finer then t, and

(X, t2) is K-analytic, then the identity map I: (X, t,) -» (X, t2) is universally Lusin-

measurable.

Recall also [9, p.   162]  that for any Banach space E the identity map /:

(E, a(E, £*)) -> (E, || ||) is universally Lusin-measurable.

The following proposition is due to Odell and Rosenthal [6].

Proposition 9. Let E be a Banach space and let x** be an element of E** and

suppose that x** is Baire-\ when E* is equipped with the w*-topology. Then there

exists a bounded sequence (xn)n>x of elements of E such x** is the w*-limit of

\Xn)n>\-

Theorem 10. Let E be a Banach space. The dual E* of E has the Radon-Nikodym

property if and only if the natural projection

P: (E***, o(E***, £**)) ^ (E*, a(E*, £**))

is universally Lusin-measurable.

Proof. If E* has the Radon-Nikodym property then the identity map (E*,

o(E*,E))^>(E*,o(E*,E**)) is universally Lusin-measurable ([7], [8], [10]). This

implies that

P: (£***, a(E***, £**)) -* (£*, a(E*, £**))

is universally Lusin-measurable since (£***, a(E***, £**))-»(£*, o(E*, £)) is

continuous. To prove the converse, consider the following diagram:
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(P***, a(75***, £**))      ^        (E*,o(E*,E))

(P*, o(P*, £**))

where I(x*) = x* for every x* in E* and P(w) = P^u) for every u in 75***. It is

enough to prove that 7 is universally Lusin-measurable [7]. Let X G

M|(P*, 0(P*, P)). By [1, p. 90], there is /i G M|(P***, 0(75***, £**)) such that

P,( ja) = X. Now P is ju-Lusin-measurable, therefore 7Pj is ¡i Lusin-measurable, and

hence 7 is P,(ju) = X Lusin-measurable by [1, p. 88]. This completes the proof.

Theorem 11. Let E be a Banach space that is complemented in its bidual 75** by a

projection P: 75** —> E, and suppose that F = P~'(0) is weakly K-analytic. Then the

following statements are equivalent:

(i) The space 75** has the Radon-Nikodym property.

(ii) The projection P is universally Lusin-measurable from 75** with its w*-topology

to e with its weak topology.

Proof. To see that (i) implies (ii), consider the following diagram:

(75**,a(75**,75*))       ^       (75, a(75,75*))

(E**, || ||)

where P,(w) = P(u) and I(u) = u for every u in 75**. Now (i) implies that 7 is

universally Lusin-measurable [7] and thus P = P,7 is universally Lusin-measurable

because P, is continuous.

To prove that (ii) implies (i), write 75** = E © F and let 7: 75** -» 75** be the

identity map. This map can be written I = P + Q.

If we can prove that the identity map

7: (75**, a(75**, 75*)) -* (75**, || ||)

is universally Lusin-measurable we will have completed the proof [7]. Observe first

that Q = I — P is universally Lusin-measurable from (75**, a(75**, 75*)) to

(75**, a(75**, 75*)). Hence Q is universally Lusin-measurable from (75**,

a(75**, 75*)) to (P, a(75**, 75*)). Note that the identity

J:(F,a(E**,E*))^(F,o(F,F*))

is universally Lusin-measurable by Theorem 8. Therefore,

Ô: (75**, o(75**, 75*)) ̂(P, || ||)

is universally Lusin-measurable. In particular, Q: (75**, a(75**, E*)) —»(75**, || ||) is

universally Lusin-measurable. Hence

1= P+ Q: (£**, o(75**, 75*)) -► (75**, || ||)

is universally Lusin-measurable. This completes the proof.

Kuo [5] proved that if E is a Banach space such that E**/E is separable then E*

and E** have the Radon-Nikodym property. The following example shows that the
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assumption £**/£ is separable cannot be weakened to the assumption that

£**/£ is weakly ^-analytic (or even reflexive).

Example. Banach spaces £ such that £**/£ weakly /^-analytic with £**, £*

or £ failing the Radon-Nikodym property.

Let £ = JT the James tree space [4]. It is known that all its even duals have the

Radon-Nikodym property and all its odd duals fail the Radon-Nikodym property

and for every n > 0 we have £(n+2) = £(n) © /2(r) with T uncountable. Therefore

£(2n)/£(2"_2) is reflexive but £2n_1 fails the Radon-Nikodym property for every

n > 1. Also £(2«+i)/£(2«-D is refiexjve but £<2n+1> fails the Radon-Nikodym

property for every n > 1. It is also worth noting that all the even duals of the

James tree space satisfy the conditions of Theorem 11.

Theorem 12. Let E be a Banach space that is complemented in £** by a projection

P: £** -> E.

(i) If for every x* in E* the map x*P is Baire-l when £** is equipped with the

w*-topology, then E has the weak Radon-Nikodym property.

(ii) // P: (£**, a(£**, £*))-»(£, o(E, E* )) is Baire-l then E has the Radon-

Nikodym property.

Proof, (i) Let ( T, 2, X) be a probability space and m : 2 —> £ be a vector

measure such that ||w(/l)|| < X(A) for every A in 2. By [3] there exists/: r—> £**

such that x*fis A-measurable for every x* in £* and

(x*,m(A)) = f (x*,f(t))dX
•'a

for every A  in 2. To complete the proof it is enough to show that Pf is

Pettis-integrable and

m(A) = Pettis- J PfdX

for every A in 2. To this end, fix x* E £* and recall that x*P is Baire-l by

hypothesis.

According to Proposition 9 there is a sequence (x*)n>x in £* such that <u, x*P)

= limM<(.x:*, u) for every u in £**. This implies that

x*Pf(t) = </(0, **P> = "m <x*,/(0>

for every t E. T. Hence x*Pf is A-measurable. On the other hand we can write

(m(A), x*) = (m(A), x*P) = lim <*„*, m(A)) = lim   f (x*,f(t)) dX
n "Ja

= f  lim «,/(0> dX = f </(0, x*P) dX = f (x*, Pf(t)) dX
JA      " JA JA

for every A in 2. Since x* was arbitrary, this implies that Pf is Pettis-integrable and

m(A) = Pettis-/,, Pf dX for every A in 2.

To prove (ii), recall that as a consequence of a theorem found in [2, p. 88] a

weakly compactly generated Banach space with the weak Radon-Nikodym prop-

erty has the Radon-Nikodym property. Thus it suffices to prove that the hypothesis
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(ii) guarantees that E is weakly compactly generated. To this end let (P„)n>] be a

sequence of continuous functions from (E**, o(E**, E*)) —»(£, a(E, E*)) such

that P(u) = weak-lim„P„(«) for every u in P**. Let K be the unit ball of P**, and

let an = supxeK\\Pn(x)\\ and set b„ = max(a„, 1) for every n > 1.

It is easy to see that the set C = U ^(l/ni»,,) Pn(K) ™ weakly compact in P

and the closed linear span of C is P. This shows that E is weakly compactly

generated and finishes the proof.

Example. A Banach space that is complemented in its second dual by a weak* to

norm Baire-1 projection.

Let P be the natural projection from /*<, to /,. To see that P is weak* to weak

Baire-1, define for each n,Pn: /*<, —W, by

l 0 if m > n.

It is easily checked that P„ is weak* to norm continuous and that lim„P„À = P(À)

in /, norm for all X in /*<,.

The author would like to thank Professor J. J. Uhl, Jr. for getting him interested

in the material treated in this paper and for his helpful suggestions.
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