UNIVERSALLY LUSIN-MEASURABLE AND BAIRE-1 PROJECTIONS

ELIAS SAAB

ABSTRACT. It is obvious that a dual Banach space E^* is reflexive if and only if the natural projection P from E^{***} to E^* is weak* to weak continuous. In this paper it is proved that the next best condition on P, namely that P is weak* to weak universally Lusin-measurable is necessary and sufficient for E^* to have the Radon-Nikodým property. In addition we prove that if E is any Banach space that is complemented in its second dual by a weak* to weak Baire-1 projection, then E has the Radon-Nikodým property. We also prove that if E is a Banach space that is complemented in its second dual E^{**} by a projection $P: E^{**} \to E$ with $F = P^{-1}(0)$ weakly K-analytic; then saying that E^{**} has the Radon-Nikodým property is equivalent to saying that P is weak* to weak universally Lusin-measurable

Let us fix some terminology and conventions. All topological spaces in this paper will be completely regular. The set of all Radon probability measures on a topological space (X, τ) will be denoted by $M^1_+(X, \tau)$.

DEFINITION 1. Let (X, τ_1) and (Y, τ_2) be two topological spaces and let $f: X \to Y$.

- (i) Let $\mu \in M^1_+(X, \tau_1)$. The map f is μ -Lusin-measurable if for every compact set K in X and for every $\varepsilon > 0$ there is a compact set $K_{\varepsilon} \subset K$ such that $\mu(K \setminus K_{\varepsilon}) < \varepsilon$ and the restriction of f to K_{ε} is continuous.
- (ii) The map f is universally Lusin-measurable if f is μ -Lusin-measurable for every $\mu \in M^1_+(X, \tau_1)$.

DEFINITION 2. A topological space is K-analytic if it is the continuous image of a K_{ab} subset of a compact space.

It is clear that a complete separable metric space is K-analytic and if E is a Banach space, then $(E^*, \sigma(E^*, E))$ is K-analytic because it is a K_{σ} . Talagrand [11] showed that a weakly compactly generated (WCG) Banach space is K-analytic for its weak topology.

DEFINITION 3. Let E be a Banach space and W a subset of E. The set W is weakly K-analytic if $(W, \sigma(E, E^*))$ is K-analytic.

DEFINITION 4. Let (X, τ_1) and (Y, τ_2) be two topological spaces and let $f: X \to Y$. The map f is Baire-1 if there exists a sequence $(f_n)_{n>1}$ of continuous functions from (X, τ_1) to (Y, τ_2) such that $f(x) = \lim_n f_n(x)$ for every $x \in X$.

DEFINITION 5. Let E be a Banach space and let (T, Σ, λ) be a probability space. A function $f: T \to E$ is Pettis-integrable if

(i) for every $x^* \in E^*$ the map $t \to \langle f(t), x^* \rangle$ is λ -measurable, and

Presented to the Society, December 19, 1978; received by the editors February 8, 1979. AMS (MOS) subject classifications (1970). Primary 46G10, 46B10, 28A30.

Key words and phrases. Radon-Nikodým property, universally Lusin-measurable maps.

© 1980 American Mathematical Society 0002-9939/80/0000-0162/\$02.25

(ii) for every A in Σ there exists x_A in E such that

$$\langle x_A, x^* \rangle = \int_A \langle f(t), x^* \rangle d\lambda$$

for every x^* in E^* . In this case we write $x_A = \text{Pettis-} \int_A f \, d\lambda$.

DEFINITION 6. Let E be a Banach space and let (T, Σ, λ) be a probability space. A function $f: T \to E$ is Bochner-integrable if there exists a sequence $(f_n)_{n>1}$ of simple functions such that

- (i) $\lim_{n} ||f(t) f_n(t)|| = 0$ for λ -almost all $t \in T$, and
- (ii) $\lim_{n} \int_{T} \|f(t) f_n(t)\| d\lambda = 0.$

It is easy to see that one can define Bochner- $\int_A f dP = \lim_n \int_A f_n d\lambda$ for each A in Σ . This definition is independent of the choice of the sequence $(f_n)_{n>1}$. For more details see [2, Chapter II].

DEFINITION 7. A Banach space E has the Radon-Nikodým (resp. weak Radon-Nikodým property) if for every probability space (T, Σ, λ) and every vector measure $m: \Sigma \to E$ such that $||m(A)|| \le \lambda(A)$ for every $A \in \Sigma$ there exists a Bochner-integrable (resp. Pettis-integrable) function $f: T \to E$ such that $m(A) = \text{Bochner-} \int_A f \, d\lambda$ (resp. $m(A) = \text{Pettis-} \int_A f \, d\lambda$) for every A in Σ .

Let (X, τ_1) and (Y, τ_2) be two topological spaces, let $\mu \in M^1_+(X, \tau_1)$ and let $f: X \to Y$ be a μ -measurable map. The measure $f(\mu)$ is defined on Borel sets of Y by $f(\mu)(B) = \mu(f^{-1}(B))$. It is easy to see that $f(\mu) \in M^1_+(Y, \tau_2)$.

The following theorem of P. A. Meyer [9, p. 126] is used in the sequel.

THEOREM 8. Let τ_1 and τ_2 be two topologies on a set X. If τ_2 is finer then τ_1 and (X, τ_2) is K-analytic, then the identity map $I: (X, \tau_1) \to (X, \tau_2)$ is universally Lusin-measurable.

Recall also [9, p. 162] that for any Banach space E the identity map I: $(E, \sigma(E, E^*)) \rightarrow (E, || ||)$ is universally Lusin-measurable.

The following proposition is due to Odell and Rosenthal [6].

PROPOSITION 9. Let E be a Banach space and let x^{**} be an element of E^{**} and suppose that x^{**} is Baire-1 when E^{*} is equipped with the w^{*} -topology. Then there exists a bounded sequence $(x_n)_{n\geq 1}$ of elements of E such x^{**} is the w^{*} -limit of $(x_n)_{n\geq 1}$.

THEOREM 10. Let E be a Banach space. The dual E^* of E has the Radon-Nikodým property if and only if the natural projection

$$P: (E^{***}, \sigma(E^{***}, E^{**})) \rightarrow (E^*, \sigma(E^*, E^{**}))$$

is universally Lusin-measurable.

PROOF. If E^* has the Radon-Nikodým property then the identity map $(E^*, \sigma(E^*, E)) \rightarrow (E^*, \sigma(E^*, E^{**}))$ is universally Lusin-measurable ([7], [8], [10]). This implies that

$$P: (E^{***}, \sigma(E^{***}, E^{**})) \to (E^*, \sigma(E^*, E^{**}))$$

is universally Lusin-measurable since $(E^{***}, \sigma(E^{***}, E^{**})) \rightarrow (E^*, \sigma(E^*, E))$ is continuous. To prove the converse, consider the following diagram:

516 ELIAS SAAB

$$(E^{***}, \sigma(E^{***}, E^{**})) \xrightarrow{P_1} (E^*, \sigma(E^*, E))$$

$$\searrow_P \qquad \qquad \downarrow_I \qquad \qquad (E^*, \sigma(E^*, E^{**}))$$

where $I(x^*) = x^*$ for every x^* in E^* and $P(u) = P_1(u)$ for every u in E^{***} . It is enough to prove that I is universally Lusin-measurable [7]. Let $\lambda \in M_+^1(E^*, \sigma(E^*, E))$. By [1, p. 90], there is $\mu \in M_+^1(E^{***}, \sigma(E^{***}, E^{**}))$ such that $P_1(\mu) = \lambda$. Now P is μ -Lusin-measurable, therefore IP_1 is μ Lusin-measurable, and hence I is $P_1(\mu) = \lambda$ Lusin-measurable by [1, p. 88]. This completes the proof.

THEOREM 11. Let E be a Banach space that is complemented in its bidual E^{**} by a projection P: $E^{**} \to E$, and suppose that $F = P^{-1}(0)$ is weakly K-analytic. Then the following statements are equivalent:

- (i) The space E** has the Radon-Nikodým property.
- (ii) The projection P is universally Lusin-measurable from E^{**} with its w^* -topology to e with its weak topology.

PROOF. To see that (i) implies (ii), consider the following diagram:

$$(E^{**}, \sigma(E^{**}, E^{*})) \xrightarrow{P} (E, \sigma(E, E^{*}))$$

$$\downarrow^{I} \nearrow_{P_{1}}$$

$$(E^{**}, || ||)$$

where $P_1(u) = P(u)$ and I(u) = u for every u in E^{**} . Now (i) implies that I is universally Lusin-measurable [7] and thus $P = P_1 I$ is universally Lusin-measurable because P_1 is continuous.

To prove that (ii) implies (i), write $E^{**} = E \oplus F$ and let $I: E^{**} \to E^{**}$ be the identity map. This map can be written I = P + Q.

If we can prove that the identity map

$$I: (E^{**}, \sigma(E^{**}, E^{*})) \rightarrow (E^{**}, || ||)$$

is universally Lusin-measurable we will have completed the proof [7]. Observe first that Q = I - P is universally Lusin-measurable from $(E^{**}, \sigma(E^{**}, E^{*}))$ to $(E^{**}, \sigma(E^{**}, E^{*}))$. Hence Q is universally Lusin-measurable from $(E^{**}, \sigma(E^{**}, E^{*}))$ to $(F, \sigma(E^{**}, E^{*}))$. Note that the identity

$$J: (F, \sigma(E^{**}, E^{*})) \rightarrow (F, \sigma(F, F^{*}))$$

is universally Lusin-measurable by Theorem 8. Therefore,

$$Q: (E^{**}, \sigma(E^{**}, E^{*})) \to (F, || ||)$$

is universally Lusin-measurable. In particular, $Q: (E^{**}, \sigma(E^{**}, E^{*})) \rightarrow (E^{**}, || ||)$ is universally Lusin-measurable. Hence

$$I = P + Q: (E^{**}, \sigma(E^{**}, E^{*})) \rightarrow (E^{**}, || ||)$$

is universally Lusin-measurable. This completes the proof.

Kuo [5] proved that if E is a Banach space such that E^{**}/E is separable then E^* and E^{**} have the Radon-Nikodým property. The following example shows that the

assumption E^{**}/E is separable cannot be weakened to the assumption that E^{**}/E is weakly K-analytic (or even reflexive).

Example. Banach spaces E such that E^{**}/E weakly K-analytic with E^{**} , E^* or E failing the Radon-Nikodým property.

Let E=JT the James tree space [4]. It is known that all its even duals have the Radon-Nikodým property and all its odd duals fail the Radon-Nikodým property and for every $n \ge 0$ we have $E^{(n+2)} = E^{(n)} \oplus l_2(\Gamma)$ with Γ uncountable. Therefore $E^{(2n)}/E^{(2n-2)}$ is reflexive but E^{2n-1} fails the Radon-Nikodým property for every $n \ge 1$. Also $E^{(2n+1)}/E^{(2n-1)}$ is reflexive but $E^{(2n+1)}$ fails the Radon-Nikodým property for every $n \ge 1$. It is also worth noting that all the even duals of the James tree space satisfy the conditions of Theorem 11.

THEOREM 12. Let E be a Banach space that is complemented in E^{**} by a projection $P: E^{**} \to E$.

- (i) If for every x^* in E^* the map x^*P is Baire-1 when E^{**} is equipped with the w^* -topology, then E has the weak Radon-Nikodým property.
- (ii) If P: $(E^{**}, \sigma(E^{**}, E^{*})) \rightarrow (E, \sigma(E, E^{*}))$ is Baire-1 then E has the Radon-Nikodým property.

PROOF. (i) Let (T, Σ, λ) be a probability space and $m: \Sigma \to E$ be a vector measure such that $||m(A)|| \le \lambda(A)$ for every A in Σ . By [3] there exists $f: T \to E^{**}$ such that x^*f is λ -measurable for every x^* in E^* and

$$\langle x^*, m(A) \rangle = \int_A \langle x^*, f(t) \rangle d\lambda$$

for every A in Σ . To complete the proof it is enough to show that Pf is Pettis-integrable and

$$m(A) = \text{Pettis-} \int Pf \, d\lambda$$

for every A in Σ . To this end, fix $x^* \in E^*$ and recall that x^*P is Baire-1 by hypothesis.

According to Proposition 9 there is a sequence $(x_n^*)_{n>1}$ in E^* such that $\langle u, x^*P \rangle = \lim_n \langle x_n^*, u \rangle$ for every u in E^{**} . This implies that

$$x*Pf(t) = \langle f(t), x*P \rangle = \lim_{n} \langle x_n^*, f(t) \rangle$$

for every $t \in T$. Hence x^*Pf is λ -measurable. On the other hand we can write

$$\langle m(A), x^* \rangle = \langle m(A), x^* P \rangle = \lim_{n} \langle x_n^*, m(A) \rangle = \lim_{n} \int_{A} \langle x_n^*, f(t) \rangle d\lambda$$
$$= \int_{A} \lim_{n} \langle x_n^*, f(t) \rangle d\lambda = \int_{A} \langle f(t), x^* P \rangle d\lambda = \int_{A} \langle x^*, Pf(t) \rangle d\lambda$$

for every A in Σ . Since x^* was arbitrary, this implies that Pf is Pettis-integrable and $m(A) = \text{Pettis-} \int_A Pf \, d\lambda$ for every A in Σ .

To prove (ii), recall that as a consequence of a theorem found in [2, p. 88] a weakly compactly generated Banach space with the weak Radon-Nikodým property has the Radon-Nikodým property. Thus it suffices to prove that the hypothesis

518 ELIAS SAAB

(ii) guarantees that E is weakly compactly generated. To this end let $(P_n)_{n>1}$ be a sequence of continuous functions from $(E^{**}, \sigma(E^{**}, E^*)) \to (E, \sigma(E, E^*))$ such that $P(u) = \text{weak-lim}_n P_n(u)$ for every u in E^{**} . Let K be the unit ball of E^{**} , and let $a_n = \sup_{x \in K} ||P_n(x)||$ and set $b_n = \max(a_n, 1)$ for every n > 1.

It is easy to see that the set $C = \bigcup_{n=1}^{\infty} (1/nb_n) P_n(K)$ is weakly compact in E and the closed linear span of C is E. This shows that E is weakly compactly generated and finishes the proof.

EXAMPLE. A Banach space that is complemented in its second dual by a weak* to norm Baire-1 projection.

Let P be the natural projection from l_{∞}^* to l_1 . To see that P is weak* to weak Baire-1, define for each n, P_n : $l_{\infty}^* \to l_1$ by

$$P_n(\lambda)(m) = \begin{cases} \lambda(m) & \text{if } m \leq n, \\ 0 & \text{if } m > n. \end{cases}$$

It is easily checked that P_n is weak* to norm continuous and that $\lim_n P_n \lambda = P(\lambda)$ in l_1 norm for all λ in l_{∞}^* .

The author would like to thank Professor J.J. Uhl, Jr. for getting him interested in the material treated in this paper and for his helpful suggestions.

REFERENCES

- 1. A. Badrikian, Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, Lectures Notes in Math., vol. 139, Springer-Verlag, Berlin and New York, 1970.
- 2. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, No. 15, Amer. Math. Soc., Providence, R.I., 1977.
 - 3. N. Dinculeanu, Vector measures, Vebdeutscher Verlag der Wisenschaften, Berlin, 1966.
- 4. R.C. James, A separable somewhat reflexive Banach space with nonseparable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743.
- 5. T. Kuo, On conjugate Banach spaces with the Radon-Nikodým property, Pacific J. Math. 59, 497-503.
- 6. E. Odell and H.P. Rosenthal, A double dual characterization of separable Banach spaces containing l_1 , Israel J. Math. 20 (1975), 375–384.
- 7. E. Saab, Une charactérisation des convexes σ(E', E) compact possédant la proprieté de Radon-Nikodým, C.R. Acad. Sci. Paris Sér. A-B 286 (1978), 45-48.
- 8. _____, The Radon-Nikodým property, weak K-analyticity and universal measurability, Ph.D. Dissertation, Univ. of Illinois, 1978-1979.
- L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute, Oxford Univ. Press, Oxford, 1973.
- 10. _____, Propriété de Radon-Nikodým, Séminaire Maurey-Schwartz (1974-1975), Centre Math., École Polytech., Paris, 1975, Exp. No. V-VI.
 - 11. M. Talagrand, Sur une conjecture de H.H. Corson, Bull. Sci. Math. (2) 99 (1975), 211-212.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801

Current address: Department of Mathematics, University of British Columbia, Vancouver, B. C., Canada V6T 1W5