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THE EXTENSION OF //'-FUNCTIONS FROM CERTAIN

HYPERSURFACES OF A POLYDISC

SERGIO E. ZARANTONELLO

Abstract. Let £ be a subvariety of the open unit polydisc V, n > 2, of pure

dimension n — 1, satisfying the following conditions. There exists an annular

domain Q" = {(z,,. .., z„) £ C: r < |z,| < 1, 1 < i < n], a continuous function

ij: [r, 1) -» [r, 1), and a 5 > 0, such that

(i) \zn\ < t,((|z,| + • • • + |z„_,|)/(/i - 1)) whenever (z„ ..., z„) e E n Q",

(ii) \a - ß\ > S whenever 1 < j < n and (f', o, f") =* (£'■ A D are both in

(Q/-1 x U X Q"-J)n E.
Theorem. Let 0 <p < oo, let g be holomorphic on E and let u be the real part of

a holomorphic function on E. If | g(z)f < u(z) for all z e E, then g can be extended

to a function in the Hardy space Hp( U").

In this article a set of conditions is given under which it is possible to extend

Hp-lunctions from codimension-1 subvarieties of a polydisc. These conditions are

essentially the same as those given by P. S. Chee ([2, Theorem 4.1, p. Ill]) for the

extension of H ""-functions, thereby providing a somewhat complete story in so far

as allp, 0 < p < oo, is concerned.

The notation will be as in [2]. If 0 < r < 1 then U(r) - {z E C: |z| < /•}, if

0 < r < s then Q(r, s) = {z E C: r < \z\ < s}. We write U = U(\) and denote by

T its boundary, the unit circle. The cartesian product of n copies of a set S c C

will be represented by S", in particular, U" will be the open unit polydisc, and T"

the unit /i-torus. By a polydomain in C we mean a cartesian product of n open

connected subsets of C.

Let ñ be a polydomain in C and let p E (0, oo). The Hardy space HP(Q)

consists of all holomorphic functions /on Q such that \f\p has an «-harmonic

majorant on ß. We denote the class of bounded holomorphic functions on ß by

Hx(il).

Fix f0 E ñ. If / E Hp(ß), and if u is the least n-harmonic majorant of |/p" on ß,

we write

Ml*™ = «tto)17'-

As is well known, || \\H'(a) endows Hp(ti) with the structure of a Banach or Frechet

space, depending on whether l<p<ooor0<p<l. The topology of HP(Q¡) is

stronger than that of local uniform convergence in ß. Furthermore, the choice of f0

is immaterial, for if we fix p and vary f0, the corresponding "norms" define

equivalent structures.
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For the remainder of the paper,/» G (0, oo) and n > 2 will be fixed.

Our first step is to prove Hp versions of Lemmas 1 and 2 of [1]. Fix 0 < r < 1

and write Q = Q(r, 1). If h is holomorphic on Q and has a Laurent expansion

h(z) = 2ÍS c(m)zm, we define Yih by Uh(z) = 21^ c(m)zm. If h is holomorphic

on Q" and has a Laurent expansion

h(zv ...,z„) = 2 c{mx, ..., mn)zÇ" ■ ■ ■ z+,

we define IL, A, 1 < / < n, to be the holomorphic function whose Laurent series is

obtained by deleting above all terms in which mj > 0.

1. Lemma. There exists a constant K such that

||n^||w({2) < ̂ ll^llwco

for all A G H"(Q).

Proof. Clearly, n is a continuous linear operator with respect to the topology of

local uniform convergence in Q. Also ([3, Theorem 10.12, p. 181]) ITA G HP(Q)

whenever A G HP(Q). The Closed Graph Theorem then implies that II is a

bounded operator on HP(Q), completing the proof.

2. Lemma. There exists a constant K such that

lin^lUcr) < *Wimir>
for all A G HP(Q") and 1 < j < n.

Proof. Fix z0 G Q. Take z0 and f0 = (z0, . . ., z0) as reference points for

|| \\hhq) an£l II IIh'(q") respectively. Let {Qk} be an expanding sequence of annulli

such that

(i)zo_Gôfc,

(ii) Qk C Q,

(iii) Q= U Qk.
Let Tk be the positively oriented boundary of Qk, and let Gk(-, z) be the Greens

function of Qk with pole at z.

To prove our lemma we make the following observation. Let/ G HP(Q"), write

f = (z„ . . ., z„) and denote the exterior normal derivative by a/av. The n-

harmonic functions

Uk{v - (¿)"iâ • • • IT}*w» • • • • "v>r¿<W"* -.)•••

g;Gt(wll,zl,)|dW1|- • ■ IdwJ

form an increasing sequence (since \f\p is w-subharmonic), which, as can be easily

seen, converges to the least /i-harmonic majorant of |/|' in Q". Hence

iwr*(o = su/(¿)7rt • ■ • í}*w» ■■■> w*>fí¡G¿»i> zo) • • •

-^G^w^z^dw.l- ■ ■ \dw„\.      (2.1)
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Without loss of generality, set/ = 1. Let u be the least «-harmonic majorant of

\h\p on Q". Fix f E Q"~\ let J = (z„ ?') E g" and define ht{zx) = h(Ç). Clearly

Ar E HP(Q); in particular, «(-,?') is a harmonic majorant of \hr\p on (2- By

Lemma 1,

l|n«rlUe) < *fl*rlUö) < «<«• fO1^. (2-2)
The relations (2.1), with n = 1 and/ = II«r, and (2.2), imply

¿J |n«r(Wl)r|;G,(z0, w,) |rfw,| < ffMz» D- (2-3)

Clearly n«r(z,) = ]!,«(£), so if we choose f = (w2, . . . , w„) E T^-1, multiply

both terms in (2.3) by j;Gk(z0, w2) ■ ■ • j¿Gk(z0, wn), and then integrate on r£_1

with respect to (¿)"_1|i/w2| • • • \dwn\, we obtain

(¿)7r;--/rJn^"---'^l:^w^o)---

I; Gk(w„, z0)\dwx\ ■ ■ ■ \dw„\ < K»u(S0).     (2.4)

Taking the supremum in (2.4) over all k, we get

l|n,A|^(C.) < K»u(U) = *'||*llWv

which establishes the lemma.

The next lemmas, 3, 4 and 5, are listed for future reference; the proofs will be

omitted. The proof of Lemma 3 is a straightforward generalization of the corre-

sponding one-variable result (see the last paragraph on p. 182 of [3]). Lemmas 4

and 5 are proven in greater generality in [6] and [7].

Let Vp 1 < / < n, be bounded domains in C with boundaries 3 V¡. The dis-

tinguished boundary of % = Vx X • • • X Vn is the product 3% = 3F,

X • • • x3K„. We say that 3% is analytic if each dVj consists of finitely many

disjoint closed analytic curves.

3. Lemma. Let 2. c % be bounded polydomains in C with analytic distinguished

boundaries 3% c 32. If f is holomorphic on %, and if its restriction to 2. is in

Hp(Çl), then f E //'(%).

For Lemmas 4 and 5, let {%},e/ be a family of polydomains in C such that

U" C U ,e/ %.

4. Lemma [6, Theorem 2.10, p. 301]. Iff is holomorphic on U" and if the restriction

off to each % n U" belongs to Hp(% n U"), then f E HP(U").

5. Lemma [7, Theorem 4.9]. For each i,j E / let fy E Hp(% n % n U") be

given such that fj + fjk + fki = 0 on any nonvoid intersection % n %y n %* D t/'".

77ie« f«ere exist functions / E //*(% n t/n) ímc/i í/W j£. - f¡ = /,-.

Let £ be a subvariety of U" of pure dimension n — 1 satisfying the following

conditions. There exist r E (0, 1), an annulus Q = ß(r, 1), a continuous function
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tj: [r, 1) -> [r, 1), and 8 > 0, such that

W<i((N+--- +K-i|)/(»-i))
whenever (z„ . . . , z„) G g" n P, and such that \a — ß\ > 8 whenever 1 < j < n

and (?', «, D * (f', /J, ?") are in (QJ~l X «7 X g»">) n P.

6. Theorem. Lei g be a holomorphic function on E, let u be a pluriharmonic

function on E, and assume \ g(z)\p < u(z) for all z G P. Then g has an extension

G G HP(U").

Proof. The requirements on P imply, as is observed in [5] for the more

restrictive case dist(P, T") > 0, that (g"_1 x U) n P (and more generally any

product obtained by permuting the n factors) is an unbranched analytic cover of

g"_1 of say m sheets. Thus, there are holomorphic functions a„ . . ., am on g"_1

such that

(g"-1 X U) n P = {(r, z„) G Ô""1 X Í/: z„ = aß') for some 1 </ < w}.

As in [5], define

m z - ad:')

*.<»-2*<r,«,<n) n  1^W) <«»
l<7<m

for^a'^^GÔ"-1 X [/.
Clearly, g„ is holomorphic in Qn~x X C/ and agrees with g on(Q"~l X £/) n P.

Since for each 1 < / < m the composition «,-(?') = M(í'> «/(?')) is tne real Part OI

some holomorphic function on Q"~l, since

\g(r, a¿n)\p < «.(D,
and since |a,(f') — a,(?')| > 5 for / =^7, it follows from (6.1) that \gn\p is majorized

on Q"~l X U by the real part of a holomorphic function. In particular, gn G

Hp(Q"-1 X t/).

A parallel construction to the above yields local extensions g¡ G Hp(Q'~x X U

X g""'') of g for each 1 < i < n.

By [2, Theorem 3.1, p. 110] there exists P G HX(U") such that P is the zero set

of P and such that P generates the ideal-sheaf of P. We define

K - (* - a)/P, (6.2)
where <i> is a holomorphic extension of g on Í7" (which exists by Cartan's Theorem

B). Since P generates the ideal-sheaf of E, the functions A, are well defined and

holomorphic on g'~' X U X g""'.

To prove our theorem, we first consider the particular case dist(P, T") > 0.

By taking r larger, if necessary, we can assume dist(P, Q") > 0, and ([4,

Theorem 4.8.3, p. 91]) that 1/P is bounded on g". This immediately implies

K - hj = (gj - g,)/F G HP(Q") which with Lemma 2 and the fact that TLfy = 0
yields

n,.A, = n,(A, - A,) G H»(Q"). (6.3)
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As in [1], we define

h = (i - n,)(i - n2) • • • (i - un)hx, (6.4)

and G = <j> — Fh. The function G is a holomorphic extension of g on U". We

proceed to establish G E HP(U").

From (6.4) it follows that

h - hx = -2, ILA, + 21#, nTLn, - + •••.

A repeated application of Lemma 2, together with (6.3), implies h — hx E HP(Q").

This, and (6.2), gives us

G = </> - Fh = <b- Fhx + F(hx - h) = g, + £(/t, - A) E HP(Q").

Lemma 3 then implies G E HP(U").

We now consider the general case of the theorem.

Fix f E (r, 1), let

c' = sup{ij(x): r < x < 1 - (1 - r')/ (n - 1)},

and choose c E (c', 1). Following [2] we define

% = t/'-' x U(r') x ty"-',      1< i < n - 1,

%„ = g""1 x [/,

S, = ß/_1 X ß(r, r') X ß"-'-' X ß(c, 1),        1 < i < « - 1.

We observe

% D % = t/'-1 X t/(r') X U"-'-1 X £/(/) X t/""*,        1 < i < * < it - 1,

% n% = Q'-1 X Q(r, r') X ß"-'-1 X U,        1 < i < n - 1.

Suppose   1 < í < it - 1.   If  (z„ . . . , z„_,) E ß,_1 X Q(r, r') X ß"-'-1   and

(zx,...,zn_x,zn) E £, then

|*„|<i>((N+ • •• +\z„-l\)/(n-l))<c'<c.

Hence dist(£, 2,) > 0. We can then apply the special case of the theorem, proven

above, to obtain extensions G¡ E Hp(G>li) of g for 1 </'<«— 1.

In (6.1) we constructed an extension gn E /F^iL,,) of g. We relabel gn = Gn. The

set of functions {G,: 1 < / < n) is then a complete set of local //^-extensions of g.

Let 1 < / </ < «. Then G, - G,. E Hp(% n %), and G,. - G, = 0 on % n %

n £• Since F generates the ideal-sheaf of £, the functions

ftj = (G( - G,)/£ (6.5)

are well defined and holomorphic on % n %,. Moreover, since l/£ is bounded

on % ([2, Remark on p. Ill]), we have/,. E Hp(% n % n %•). The functions/-,,

are holomorphic on % n %, and the distinguished boundary of % n % is

contained   in   that   of   2, n % n %■   Lemma   3   then   implies   that fy E

H"(% n %).
The sets {%,: 1 < / < n] form an open cover of U". They can be enlarged to

form an open cover of U" such that the intersection of the enlargement of %, with

U" is again %,.. By Lemma 5 there exist functions/ E Hp(slii) such that

fj-ft-fv (6-6)
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The functions G¡ + f¡F are in Hp(%) and extend g. Moreover, (6.5) and (6.6)

imply G, + /P = Gj + fi_F on % n %. Hence we can analytically continue the

functions G, + /P to a holomorphic function G on t/" which extends g. The

restriction of G to % (the function G, + /P) is in Hp(%¡). Lemma 4 then implies

G G HP(U"). This completes the proof.
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