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AN EXAMPLE OF A LEV1INAL C*-ALGEBRA

A. J. LAZAR AND D. C. TAYLOR

Abstract. For each countable ordinal y there exists a unital separable liminal

C*-algebra Ay with the property that if (Jp)p_i is any composition sequence of Ay

such that the spectra of the quotients Ip + ¡/ Ip axe Hausdorff, then ß > y + 1.

Moreover, there is a composition sequence (/p)Jl¡ of Ay such that the spectra of

the quotients /p+i//p are Hausdorff.

1. Introduction. In [2, 4.7.25] J. Dixmier posed the following problem: Construct

an example of a liminal C*-algebra which does not admit any finite composition

sequence (/p) such that the spectra of the quotients Ip+i/Ip are Hausdorff.

Blackadar solved this problem in [1, p. 325]. The purpose of this note is to show

that there are examples with the above property with respect to any countable

ordinal. Specifically, we prove the following theorem.

Theorem. For each countable ordinal y there exists a unital separable liminal

C-algebra Ay with the property that if (Ip)p-\ is any composition sequence of Ay such

that the spectra of the quotients Ip+l/Ip are Hausdorff, then ß > y + 1. Moreover,

there is a composition sequence (Ip)lt\ of Ay such that the spectra of the quotients

Ip+l/1p are Hausdorff.

2. The two-point Tx compactif ¡cation. In this section we present some topological

results that are necessary for the proof of our theorem.

Let X be a topological space that is at least Tx and let oo1; oo2 be points not in X.

Let Xx be the set X u {oo,, oo2} together with the topology whose members are all

subsets of U of X, such that (i) if t/ n {oo,, oo2} = 0, then U is an open subset of

X, (ii) if U n {ooj, oo2} ¥= 0, then the complement of U u {oo„ oo2} is a closed

compact subset of X. Clearly, A', is a compact Tx space and if A" is not compact,

then A', is not Hausdorff. We call Xx the two-point Tx compactification of X.

Next suppose ß is an ordinal. A topological space X is said to have a Hausdorff

decomposition of length ß if there exists a generalized sequence {t7p}p_i of open

subsets of X with the following properties, (i) Up G Up+X, p < ß, (ii) Ux and

Up+X\ Up, p < y, are Hausdorff, (iii) if p < ß is a limit ordinal, then Up =

U «<„ U„ (iv) UB = X.

Now assume A' is a denumerable discrete set and let Xx denote the two-point Tx

compactification of X. Next let ß be a countable ordinal. Suppose that for all

p < ß, Xp has already been defined. If ß is not a limit ordinal, let XB be the

two-point Tx compactification of the disjoint union U "_ i Yn, where each Yn is a
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copy of Xp_x. If ß is a limit ordinal, let Xß be the two-point Tx compactification of

the disjoint union U p<ß Xp. We have defined by induction a compact Tx topologi-

cal space Xß for each countable ordinal ß.

2.1. Lemma. Let ß be a countable ordinal and let Xß be the topological space

defined above. Then Xß does not admit any Hausdorff decomposition of length less

than or equal to ß but does admit one of length ß + 1.

Proof. Clearly the assertion holds for the topological space Xx. Now suppose the

assertion holds for all topological spaces Xp, p < ß. First, assume ß is not a limit

ordinal. Recall that Xß is the two-point Tx compactification of the disjoint union

U™_i Yn, where each Y„ is a copy of Xß_x. Let {Vp}ps_x be a Hausdorff

decomposition of Xfi_x of length ß. Set Uß+X = Xß and Up = U"_! V , p < ß,

where Vpn is the copy of Vp in Yn. Clearly, {Up}^x is a Hausdorff decomposition

of Xß of length ß + 1. Now suppose { Up}yp_x is a Hausdorff decomposition of Xß

of length y. Assume y < ß. If y < ß, then {Up n Yx}yp_x is a Hausdorff decom-

position of Xß_x of length less than or equal to ß — 1, a contradiction. So assume

y = ß. If Yn \ Uß_, =£ 0, n = 1, 2, 3, ... , then there is a sequence in the comple-

ment of Uß_x that converges to two points in the complement of Uß_x. This

contradicts the fact that Uß\ Uß_x is Hausdorff decomposition. Thus there is a

Y„ c Uß-i- But this implies that {Up n Yn}^z} is a Hausdorff decomposition of

Yn of length ß — 1, another contradiction. Thus y > ß + 1.

Suppose /? is a limit ordinal. Recall that Xß is the two-point Tx compactification

of the disjoint union U p<ß Xp. For each p<ß let {F^«}«!! be a Hausdorff

decomposition of Xp of length p + 1. Set Ux = U p_i Fp,i and let 5 be an ordinal

such that 1 < S < ß. Assume that Ua has been defined for all a < 8. If S is not a

limit ordinal, then set

u, = (  U    rj u ( U xl

If S is a limit ordinal, then set Us = \Ja<s Ua. Next set Uß+X = Xß. Clearly

{Up}pS-\ ls a Hausdorff decomposition of Xß of length ß + 1. Finally suppose

{ L/p}^_ j is a Hausdorff decomposition of Xß of length y. Then {Up n Xa}yp_x is a

Hausdorff decomposition of Xa of length greater than or equal to a + 1 for all

a < ß. This implies y > a + 1 for all a < ß. Thus y > ß. If ß = y, then A^ = cTg

= U p<ß Up. Since A^ is compact, there exists a p < ß such that A^ = Up. This

means {i/s n Xp}ps=x is a Hausdorff decomposition of Xp of length p, which

contradicts our induction hypothesis. Thus our proof is complete.

3. The example. For each positive integer n let An denote a C*-algebra with

identity /„ and Tx spectrum An. Let p„ be a nontrivial projection in An such that

"■(/>„) ̂ 0 ^ t(4 - Pn) for a11 "" e An; set qn = In - pn. Let 2 G> A„ denote the

direct sum of the sequence {An} and let &({(A„,pn)}) denote the set of all

x G 2 © An with the following property. There exist complex numbers A, and X2
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such that

lim \\x(n) -\xPn -X2q„\\ =0.
ft—»00

3.1. Proposition. Let &({(A„,p„)}) be defined as above. Then S. = &({(An,pn)})

is a unital C*-algebra whose spectrum & is the two-point Tx compactification of the

disjoint union U£°_i An. Moreover if each An is separable and liminal, then a is

separable and liminal.

Proof. It is straightforward to verify that â is a unital C*-algebra and if each A„

is separable, it is clear that â is separable. Now let T be the two-point Tx

compactification of the disjoint union U "_ i An and let irx, ir2 De l^ points at

infinity. Define the map ¥: T-» ¿E by the following formula. For w, E T, i = 1, 2,

and x E & let ty(itj)(x) = \, where X, and X2 are the unique complex numbers for

which

lim ||*(n) - À,/>„ - A2?„|| =0.
n—»oo

Clearly ^(w,), /' = 1, 2, belong to ¿E. If it £ An for some positive integer n and

x E &, define ^(w)(x) = ir(x(n)). Clearly ^ is a one-to-one map of Tinto &. Now

we wish to show that ^ is an onto map. Let /w be the set of all x in & for which

there is a complex number X such that \\x(n) — 0 • pn — Xqn\\ -»0. Similarly define

Jm. Let/?, q E & be defined byp(n) = pn, q(n) = qn. Note/>£2 G J and q& G Jv .

Thus it easily follows that /,, i «■ 1, 2, are closed two-sided ideals of & such that

Jv + Jn = &. Let p: & -» B(H) be an irreducible representation of 6E. Without

loss of generality we may assume p\Jv is nondegenerate. If p\Jn = it is nondegener-

ate for some integer n, where Jn is defined to be the set of all x in & such that

x(m) = 0, m ¥= n, then by virtue of [2, 2.10.4], ^(ir) = p. So assume p\Jn = 0 for

n = 1,2,.... For each positive integer « define e„ E /,, by the formula

,   -.      Í A»>    m < n,
e„(m) = {   m '

Clearly, {t*,} is an approximate identity for Jn . Next let x E Jv and À be the

unique complex number for which

\\x(n)-0-Pn-Xqn\\^0.

By the assumption made on p, p(x - Xem) —> 0. So for h E H, p(x)(h) =

lim,^ p(x - Xem)(h) + Xp(em)(h) = XIH(h) by virtue of [2, 2.2.10]. In particular,

p(q) = IH. Next let x E & and Xx, X2 be the unique complex numbers for which

ll*(«) - \Pn - MJI ->0. It follows that p(x)(A) = p(x)p(<7)(/i) = p(x9)(A) = X2A,
that is, p = yt(ir2). We have now proved that ^t maps T onto &. This proves, by the

way, that if each A„ is liminal, then (£ is liminal.

By virtue of [2, 3.2.1] ¥ is a homeomorphism of A„ onto è7- and by [2, 3.2.3] è7-

is an open and closed compact subset of ¿E. Thus ^ is a homeomorphism of the

disjoint union LM„ onto U &"■ It remains to be shown that the family of open

neighborhoods of ir, is mapped onto the family of open neighborhoods of p, =

¥(tt,), i = 1, 2. Let U be an open subset of ¿2 containing p,. Then there is a closed

ideal J oi A such that U = éf/. Thus there is an x E / such that p,(x) ^ 0. Let A,
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and X2 be the unique complex numbers for which

\\xin)-XxPn-X2q„\\^0.

To say px(x) =£ 0 means Xx ¥^ 0. So xp has the property px(xp) = Xx ¥= 0. Now

suppose there is a subsequence {nk} of positive integers and elements irk G A^ for

which ¥(wk) G U. It follows that

0 = *(**)(*/>) = "*(*/>("*)) = t*(*/>("*) - a,pK)) + Xxirkipink)).

Since «¿(/»(/fe)) * 0, |K(p(n*))|| = 1. Thus

M -  K(*K) - V^ - A2^Kll -* 0.

a contradiction. So there exists a positive integer N such that S^(^„) c U for all

n > N. Now it is straightforward to verify that

*-'(t/) u {*„ ̂ 2} = ( U *-*(«'• n u)\ u (   U    4.) u {w„ *2}
\n=l / \n = JV+l        J

so clearly ¥"'((7) is an open neighborhood of wx. Similarly, ir~l(U) is an open

neighborhood of m2 whenever U is an open neighborhood of p2.

Finally, let V be an open subset of T containing trx. There is a positive integer N

such that for n > N we have Ân G V. Set K, = U NnZ\(V n An) and V2= V\VX.

Clearly, Vx and V2 axe open. Moreover, it is clear that ^(Vx) is open in &. If

ir2 G V2, put / = {x G &: x(n) = 0, n < N}. If m2 £ K2, put / = /^ n {x G &:

x(n) = 0, n < N}. It is easy to see that in either case / is a closed two-sided ideal

of & and that ^(V2) = @?. So ^(K) = *(F,) u ^(I^) is an open neighborhood of

p,. Similarly ^(K) is an open neighborhood of p2 whenever F is an open

neighborhood of ir2. This completes the proof.

Remark. Let {(Bn,p'n)} be any rearrangement of the sequence {(An,pn)}. The

above result clearly implies that the spectrum of &({(An, pn)}) is homeomorphic to

the spectrum of &({(Bn, p'„)}). Actually a stronger statement can be made. The

C*-algebra &({(An,pn)}) is "-isomorphic to the C-algebra &({(B„, p'„)}). Of

course, if each An is separable then, by [2, 9.5.3], each An is lirninal since it has a Tx

spectrum.

3.2. Proof of the Theorem. Let Ax be the C*-algebra of all sequences of 2 X 2

matrices of complex numbers which converge to a diagonal matrix. By [2, 4.7.19]

A, is a unital separable lirninal C*-algebra whose spectrum is homeomorphic to the

space Xx defined in Lemma 2.1. Let y be a countable ordinal and suppose, for each

p < y, Ap is a unital separable lirninal C*-algebra whose spectrum is homeomor-

phic to the space Xp defined in Lemma 2.1. First, assume y is not a limit ordinal.

For each positive integer n, let M2(Ay_x) denote the C*-algebra of 2 X 2 matrices

over Ay_x. From [3, Corollaire 5, Lemme 16] we see that M2(Ay_x) is a unital

separable lirninal C*-algebra whose spectrum M2 (Ay_,) is homeomorphic to Ay_,,

the spectrum of Ay_,. Thus M\ (Ay_x) is homeomorphic to X ,. For each positive

integer n let B„ = M2(Ay_x) and

Pn =
0 0  '
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where Iy_x is the identity of Ay_x. Now set Ay = &({(B„,pn)}) as defined in

Proposition 3.1. Thus by Proposition 3.1 and our induction hypothesis Ay is a

unital separable lirninal C*-algebra whose spectrum Ay is homeomorphic to Xy.

Now assume y is a limit ordinal. Since y is countable, the set of all p < y can be

put in a sequence {p„}"_ |. For each positive integer n, let Bn = M^A^) and

Pn=W  oj'

where / is the identity of A^. Set Ay — &({(Bn, pn)}) as defined in Proposition

3.1. Again by Proposition 3.1, [3] and our induction hypothesis, Ay is a unital

separable lirninal C*-algebra whose spectrum Ay is homeomorphic to Xy. The

assertion of the theorem follows immediately from Lemma 2.1 and [2, 3.2.1].
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