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A TWO POINT BOUNDARY VALUE PROBLEM

WITH JUMPING NONLINEARTTIES

ALFONSO CASTRO B.

Abstract. We prove that a certain two point BVP with jumping nonlinearities has

a solution. Our result generalizes that of [2]. We use variational methods which

permit giving a minimax characterization of the solution. Our proof exposes the

similarities between the variational behavior of this problem and that of other

semilinear problems with noninvertible linear part (see [5]).

1. Introduction and notations. Here we study the two point BVP

U"(/) + g(u(t)) = p(t),     ie[0,77],

1 «(0) = «(tt) = 0.
We assume that g: R —> R and/?: [0, n] -» R are continuous functions such that

(1.1) g(u) = u for u > 0.

(1.2) There exists a > 0 such that g(u)/u -» 1 + a as u -» -oo.

(1.3) /o>(0sin(0 dt < 0.
The purpose of this paper is to give a variational proof of

Theorem A. // (1.1), (1.2) and (1.3) are satisfied then (I) has a solution.

Theorem A is a generalization of a result due to L. Aguinaldo and K. Schmitt

(see [2]). The main difference between our approach and that of [2] is that we use

variational methods while the proof of [2] is based on degree theoretical arguments.

As a byproduct of our technique for proving Theorem A we observe the functional

/, to be defined below, has a variational behavior similar to that of the functional

corresponding to other semilinear problems with noninvertible linear part. We use

a variant of a minimax principle proved first by P. Rabinowitz to obtain a

variational proof of the theorem due to Ahmad, Lazer and Paul (see [3]).

Let H = Hq-2[0, -n] (see [1, p. 44]) be the Sobolev space of square integrable

functions defined on [0, it] vanishing on {0, ir} with generalized first derivative in

L2[0, it]. The inner product and norm in H are given by

<w, o> = C u\t)v'{t) dt   and    ||«||2 = <m, m>.
•'o

According to Sobolev's lemma (see [1, p. 95]) H can be imbedded in the space of

continuous functions defined on [0,7r]. Thus, there exists a real number c > 0 such
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that

max  \u(t)\ < c||k||    for all u G H. (1.4)
re[0, tt]

We let J: H -» R be defined by

/(«) = jj^**^ - G(«W) + /»(')«(')) dt, (1.5)

where G(m) = (og(s) ds. It is easy to check that

<yj(u), v) = lim -i-/-^
r->0 '

= /    u'v' — g(u)v + pv   for all u, v G H. (1.6)
-'o

By standard regularity theory it follows that if V/(m) = 0 then « is a solution of (I).

Therefore, from now on we aim our work towards proving that J has a critical

point. In the rest of this paper the symbol / means integral from 0 to it unless the

integration limits are specified. For future reference, we remark that because of

(1.1) and (1.2) there exists a real number A/, such that

|G(m)| < ((1 + 2a)u2)/2 + M,    for all u G R. (1.7)

2. Preliminary lemmas. If fp(t)sin(t) dt = 0 then it is easily verified that {u" + u

= p(i), t G [0, vr], h(0) = 1/(77) = 0} has a positive solution «q. Therefore u0 is a

solution of (I). Thus it is sufficient to restrict ourselves to the case

f p(t)sin(t) dt < 0. (2.1)

Lemma 1. The functional J satisfies /(Àsin(f)) -» -00 as \\\ -» 00.

Proof. That ./(Xsin(/))-»-oo as A-»00 follows immediately from (1.1) and

(2.1). Because of (1.2) there exists a real number M such that

G(u) > ((1 + a/2)u2)/2 + M   for all u < 0. (2.2)

Therefore, for À < 0 we have

/(Asin(/)) < (X2/2)f cos2(r) dt - (1 + a/2)( f sin2(i))(A2)/2

-Mir + \( p(t)sin(t) dt. (2.3)

Since a > 0, it is clear that (2.3) implies that /(Asin(r)) -» -00, as X -» -00, and the

lemma is proved.

We let Y be the closed subspace of H generated by {sin(2f), sin(3<), . . . }. It is

readily verified that Y is the orthogonal complement of the subspace generated by

sin(r)- Observe that for v G Y

4fy2(t)dt<f(y'(t)fdt. (2.4)
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Lemma 2. There exist real numbers r0 > 0 and p0 > 0 such that if y G Y and

Il y II = rQthen

/(posin(/) + v(î)) > sup /(Asin(r)) + 1.
AeR

Proof. Because of (1.4), given e > 0 there exists p > 0 such that if y G Y and

lb II = 1 then

y(t) + psin(/) > 0   for all t G [e, it - ej.

Furthermore, for all t G [0, it], y(t) + psin(r) > -c. Consequently, for b > 0 and

ye rwith||y|| = 1,

/(¿>(psin t + y(t))) > (b2p2)/2f cos2(t) dt - {b2p2)/lj sin2(f) ¿f

+ ¿2/2 - b2f y\t) dt + bpf p(t)sm(t) dt

+ bf p(t)y(t) dt - f G(¿(psin(í) + y(t))) dt

-f    G(b(pSin(t) + y(t))) dt.
Jir-e

Combining this with (2.2) and (2.4) we have

J(b(psin(t) + y(t))) > 62(3/8) - bpf p(t)sm(t) dt

-2e(l + (a/2))è2c2 - 2eM.

Thus, choosing e small enough and b sufficiently large we see that r0 = b and

p0 = pb satisfy the conditions of the lemma. Hence, Lemma 2 is proved.

From now on p0 and r0 denote two fixed real numbers satisfying Lemma 2.

Because of (1.1) and (1.2), / is bounded on bounded sets. Therefore, there exists a

real number c, such that if v G Tand \\y\\ = r0 then

y(Posin(i) + y(t)) > cv (2.5)

We let \, > p0 be such that

max^AoSiniOXA-Vùii'))} < c, — 1. (2.6)

We denote by 2 the family of all continuous functions o: [0, 1] -» S = H —

{p0sin(f) +y(t);y G Tand || v|| = r0} such that

(a) ff(0) = -\¡sin(t), rj(l) = A„sin(i), and

(b) a is homotopic on S to a map o0 through a homotopy which keeps end points

fixed, where o0 is defined by a0(s) = 2jAoSin(/) - \,sin(i)-

An elementary topological argument shows that if a G 2 then there exists

s G [0, 1] and v G Y with o(s) = p0sin(f) + y{t) and || v|| < /■„.

Theorem 3. Let J, r0, p0 and 2 be as before. If every sequence {xn) c H such that

VJ(xn) -* 0 and {J(xn)} is bounded has a convergent subsequence, then J has a

critical point u0. Moreover

J(u0) = inf ( max  J(a(s))].
»6ïVje|0,i] /
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Since Theorem 3 is a slight variant of Theorem 1.2 of [5] we do not give a proof

of it here.

3. Proof of Theorem A. Let {xn} G H be a. sequence such that VJ(xn)-*Q and

[J(x„)} is bounded. According to Theorem 3 and the remark following (1.6) we

only need show that {xn} has a convergent subsequence.

By (1.6), VJ(x) = x + gi(x), where g,: H^ H is continuous. Moreover, since

the inclusion of H into L2[0, -it] is compact (see [1, Theorem 6.2]), g, is compact. In

addition, gx maps weakly convergent sequences into convergent sequences.

Suppose {xn} does not have a convergent subsequence. First we observe that

{*„} does not have a weakly convergent subsequence {x^}. For if it does, then

{gi(x„k)} is a convergent sequence; since x„k + g,(.x^)-»0 we have that {x^}

converges, a contradiction. Hence we can assume that {||x„||} tends to +oo.

Let {jc /||jc_||} be a subsequence of {x„/||-x:n||} converging weakly to a point x0

in H. For each v G H we have

(v/og, o>/n^n = (/ *;«' - gixjv + /»J/ii^ii ->o.

Therefore

j(x'ov'-(g(xn)/\\xni\\))v^0   asy->oo. (2.7)

Because of (1.1) and (1.2) we have g(x) = /,(*) + /2(jc) where /, is defined by

{/iOO = * for x > 0 and/,(x) = (1 + ot)x for x < 0), and/2 satisfies

(f2(x))/x^0   as|x|->+oo. (2.8)

Thus, we have

/U(V/Kii)ü =fMs/\\s\\> + (/aíVVKii-
Because of (2.8) and (2.9) we obtain

f jc^o' - fx(x0)v = 0   for all ü G /f.

Therefore x0 satisfies {x¡¡ + fx(x0) = 0, x(0) = x(ir) = 0}, which implies that x0 =

fsin(/) for some f > 0. In case f = 0, by (1.7) we have that given e > 0 there exists

j0 such that

f G(Xni(t)) dt < e(l + 2a)\\x^\\2/2 + M &   for ally >y0. (2.9)

From this inequality we have

J{Xn) > ||^||2/2 - e(l + 2a)||S||2/2 - M^W

-WXtjWfipxJ/WXnjW- (2-10)

When e(l + 2o) < 1 our assumption that ||x„|| -» oo contradicts the boundedness

of{||/(JC„)||}.
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It remains to consider the case f > 0. Note that {gOO/||*J|} converges in

L2[0, it] to/,(x0) and gx(.xn/\\xn\\) converges to gx(xj. We are assuming VJ(xn) =

xn + gi(jcn)-»0, so {jc /||jc ||} converges to x0. Since x0 is positive on (0, tt) with

jc'(0) > 0 and x'{tt) < 0, we have that there exists y, and a real number c such that

xn (t) > c for all t G [0, tt] and ally" > /',. Thus, asy -* oo,

(2y(^))/n^|| = /((*;)2 + 2/hcJ/II^H

-'(/     *2+/      G(*))/||x||-a

and

<v/(^), yn,i) - /((*;)* + w,)/H*,l

By the hypotheses on {x„} we find (fp(x /\\x \\)) -» 0. Then by (2.1), f cannot be

positive. This final contradiction implies that {xn} has a convergent subsequence

and Theorem A is proved.

Remark. With obvious modifications of the method above one can prove results

analogous to Theorem A for other type of boundary conditions. For example, it

can be shown that

an Í ""+ g(u(i)) = p(t)' re[M>
1 w'(0) = «'(*) = 0

has a solution if

(l')g(w) = 0for« > 0.

(11') for some a > 0, g(u)/u -» a as u -> -oo.

(Ill') fp(t)dt< 0.
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