A TWO POINT BOUNDARY VALUE PROBLEM WITH JUMPING NONLINEARITIES

ALFONSO CASTRO B.

Abstract

We prove that a certain two point BVP with jumping nonlinearities has a solution. Our result generalizes that of [2]. We use variational methods which permit giving a minimax characterization of the solution. Our proof exposes the similarities between the variational behavior of this problem and that of other semilinear problems with noninvertible linear part (see [5]).

1. Introduction and notations. Here we study the two point BVP

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+g(u(t))=p(t), \quad t \in[0, \pi] \tag{I}\\
u(0)=u(\pi)=0
\end{array}\right.
$$

We assume that $g: \mathbf{R} \rightarrow \mathbf{R}$ and $p:[0, \pi] \rightarrow \mathbf{R}$ are continuous functions such that
(1.1) $g(u)=u$ for $u \geqslant 0$.
(1.2) There exists $\alpha>0$ such that $g(u) / u \rightarrow 1+\alpha$ as $u \rightarrow-\infty$.
(1.3) $\int_{0}^{\pi} p(t) \sin (t) d t \leqslant 0$.

The purpose of this paper is to give a variational proof of
Theorem A. If (1.1), (1.2) and (1.3) are satisfied then (I) has a solution.
Theorem A is a generalization of a result due to L. Aguinaldo and K. Schmitt (see [2]). The main difference between our approach and that of [2] is that we use variational methods while the proof of [2] is based on degree theoretical arguments. As a byproduct of our technique for proving Theorem A we observe the functional J, to be defined below, has a variational behavior similar to that of the functional corresponding to other semilinear problems with noninvertible linear part. We use a variant of a minimax principle proved first by P. Rabinowitz to obtain a variational proof of the theorem due to Ahmad, Lazer and Paul (see [3]).

Let $H=H_{0}^{1,2}[0, \pi]$ (see [1, p. 44]) be the Sobolev space of square integrable functions defined on $[0, \pi]$ vanishing on $\{0, \pi\}$ with generalized first derivative in $L_{2}[0, \pi]$. The inner product and norm in H are given by

$$
\langle u, v\rangle=\int_{0}^{\pi} u^{\prime}(t) v^{\prime}(t) d t \quad \text { and } \quad\|u\|^{2}=\langle u, u\rangle .
$$

According to Sobolev's lemma (see [1, p. 95]) H can be imbedded in the space of continuous functions defined on $[0, \pi]$. Thus, there exists a real number $c>0$ such

[^0]that
\[

$$
\begin{equation*}
\max _{t \in[0, \pi]}|u(t)| \leqslant c\|u\| \quad \text { for all } u \in H \tag{1.4}
\end{equation*}
$$

\]

We let $J: H \rightarrow R$ be defined by

$$
\begin{equation*}
J(u)=\int_{0}^{\pi}\left(\frac{\left(u^{\prime}(t)\right)^{2}}{2}-G(u(t))+p(t) u(t)\right) d t \tag{1.5}
\end{equation*}
$$

where $G(u)=\int_{0}^{u} g(s) d s$. It is easy to check that

$$
\begin{align*}
\langle\nabla J(u), v\rangle & \equiv \lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t} \\
& =\int_{0}^{\pi} u^{\prime} v^{\prime}-g(u) v+p v \quad \text { for all } u, v \in H . \tag{1.6}
\end{align*}
$$

By standard regularity theory it follows that if $\nabla J(u)=0$ then u is a solution of (I). Therefore, from now on we aim our work towards proving that J has a critical point. In the rest of this paper the symbol \int means integral from 0 to π unless the integration limits are specified. For future reference, we remark that because of (1.1) and (1.2) there exists a real number M_{1} such that

$$
\begin{equation*}
|G(u)|<\left((1+2 \alpha) u^{2}\right) / 2+M_{1} \quad \text { for all } u \in \mathbf{R} \tag{1.7}
\end{equation*}
$$

2. Preliminary lemmas. If $\int p(t) \sin (t) d t=0$ then it is easily verified that $\left\{u^{\prime \prime}+u\right.$ $=p(t), t \in[0, \pi], u(0)=u(\pi)=0\}$ has a positive solution u_{0}. Therefore u_{0} is a solution of (I). Thus it is sufficient to restrict ourselves to the case

$$
\begin{equation*}
\int p(t) \sin (t) d t<0 \tag{2.1}
\end{equation*}
$$

Lemma 1. The functional J satisfies $J(\lambda \sin (t)) \rightarrow-\infty$ as $|\lambda| \rightarrow \infty$.
Proof. That $J(\lambda \sin (t)) \rightarrow-\infty$ as $\lambda \rightarrow \infty$ follows immediately from (1.1) and (2.1). Because of (1.2) there exists a real number M such that

$$
\begin{equation*}
G(u) \geqslant\left((1+\alpha / 2) u^{2}\right) / 2+M \quad \text { for all } u<0 \tag{2.2}
\end{equation*}
$$

Therefore, for $\lambda<0$ we have

$$
\begin{align*}
J(\lambda \sin (t))< & \left(\lambda^{2} / 2\right) \int \cos ^{2}(t) d t-(1+\alpha / 2)\left(\int \sin ^{2}(t)\right)\left(\lambda^{2}\right) / 2 \\
& -M \pi+\lambda \int p(t) \sin (t) d t \tag{2.3}
\end{align*}
$$

Since $\alpha>0$, it is clear that (2.3) implies that $J(\lambda \sin (t)) \rightarrow-\infty$, as $\lambda \rightarrow-\infty$, and the lemma is proved.

We let Y be the closed subspace of H generated by $\{\sin (2 t), \sin (3 t), \ldots\}$. It is readily verified that Y is the orthogonal complement of the subspace generated by $\sin (t)$. Observe that for $y \in Y$

$$
\begin{equation*}
4 \int y^{2}(t) d t \leqslant \int\left(y^{\prime}(t)\right)^{2} d t \tag{2.4}
\end{equation*}
$$

Lemma 2. There exist real numbers $r_{0}>0$ and $\rho_{0}>0$ such that if $y \in Y$ and $\|y\|=r_{0}$ then

$$
J\left(\rho_{0} \sin (t)+y(t)\right) \geqslant \sup _{\lambda \in \mathbf{R}} J(\lambda \sin (t))+1
$$

Proof. Because of (1.4), given $\varepsilon>0$ there exists $\rho>0$ such that if $y \in Y$ and $\|y\|=1$ then

$$
y(t)+\rho \sin (t)>0 \quad \text { for all } t \in[\varepsilon, \pi-\varepsilon] .
$$

Furthermore, for all $t \in[0, \pi], y(t)+\rho \sin (t) \geqslant-c$. Consequently, for $b>0$ and $y \in Y$ with $\|y\|=1$,

$$
\begin{aligned}
J(b(\rho \sin t+y(t))) \geqslant & \left(b^{2} \rho^{2}\right) / 2 \int \cos ^{2}(t) d t-\left(b^{2} \rho^{2}\right) / 2 \int \sin ^{2}(t) d t \\
& +b^{2} / 2-b^{2} \int y^{2}(t) d t+b \rho \int p(t) \sin (t) d t \\
& +b \int p(t) y(t) d t-\int_{0}^{e} G(b(\rho \sin (t)+y(t))) d t \\
& -\int_{\pi-\varepsilon}^{\varepsilon} G(b(\rho \sin (t)+y(t))) d t
\end{aligned}
$$

Combining this with (2.2) and (2.4) we have

$$
\begin{aligned}
J(b(\rho \sin (t)+y(t))) \geqslant & b^{2}(3 / 8)-b \rho \int p(t) \sin (t) d t \\
& -2 \varepsilon(1+(\alpha / 2)) b^{2} c^{2}-2 \varepsilon M
\end{aligned}
$$

Thus, choosing ε small enough and b sufficiently large we see that $r_{0}=b$ and $\rho_{0}=\rho b$ satisfy the conditions of the lemma. Hence, Lemma 2 is proved.

From now on ρ_{0} and r_{0} denote two fixed real numbers satisfying Lemma 2. Because of (1.1) and (1.2), J is bounded on bounded sets. Therefore, there exists a real number c_{1} such that if $y \in Y$ and $\|y\|=r_{0}$ then

$$
\begin{equation*}
J\left(\rho_{0} \sin (t)+y(t)\right) \geqslant c_{1} \tag{2.5}
\end{equation*}
$$

We let $\lambda_{0}>\rho_{0}$ be such that

$$
\begin{equation*}
\max \left\{J\left(\lambda_{0} \sin (t)\right), J\left(-\lambda_{0} \sin (t)\right)\right\}<c_{1}-1 \tag{2.6}
\end{equation*}
$$

We denote by Σ the family of all continuous functions $\sigma:[0,1] \rightarrow S \equiv H-$ $\left\{\rho_{0} \sin (t)+y(t) ; y \in Y\right.$ and $\left.\|y\|=r_{0}\right\}$ such that
(a) $\sigma(0)=-\lambda_{0} \sin (t), \sigma(1)=\lambda_{0} \sin (t)$, and
(b) σ is homotopic on S to a map σ_{0} through a homotopy which keeps end points fixed, where σ_{0} is defined by $\sigma_{0}(s)=2 s \lambda_{0} \sin (t)-\lambda_{0} \sin (t)$.

An elementary topological argument shows that if $\sigma \in \Sigma$ then there exists $s \in[0,1]$ and $y \in Y$ with $\sigma(s)=\rho_{0} \sin (t)+y(t)$ and $\|y\|<r_{0}$.

Theorem 3. Let J, r_{0}, ρ_{0} and Σ be as before. If every sequence $\left\{x_{n}\right\} \subset H$ such that $\nabla J\left(x_{n}\right) \rightarrow 0$ and $\left\{J\left(x_{n}\right)\right\}$ is bounded has a convergent subsequence, then J has a critical point u_{0}. Moreover

$$
J\left(u_{0}\right)=\inf _{\sigma \in \Sigma}\left(\max _{s \in[0,1]} J(\sigma(s))\right)
$$

Since Theorem 3 is a slight variant of Theorem 1.2 of [5] we do not give a proof of it here.
3. Proof of Theorem A. Let $\left\{x_{n}\right\} \subset H$ be a sequence such that $\nabla J\left(x_{n}\right) \rightarrow 0$ and $\left\{J\left(x_{n}\right)\right\}$ is bounded. According to Theorem 3 and the remark following (1.6) we only need show that $\left\{x_{n}\right\}$ has a convergent subsequence.

By (1.6), $\nabla J(x)=x+g_{1}(x)$, where $g_{1}: H \rightarrow H$ is continuous. Moreover, since the inclusion of H into $L_{2}[0, \pi]$ is compact (see [1, Theorem 6.2]), g_{1} is compact. In addition, g_{1} maps weakly convergent sequences into convergent sequences.

Suppose $\left\{x_{n}\right\}$ does not have a convergent subsequence. First we observe that $\left\{x_{n}\right\}$ does not have a weakly convergent subsequence $\left\{x_{n_{k}}\right\}$. For if it does, then $\left\{g_{1}\left(x_{n_{k}}\right)\right\}$ is a convergent sequence; since $x_{n_{k}}+g_{1}\left(x_{n_{k}}\right) \rightarrow 0$ we have that $\left\{x_{n_{k}}\right\}$ converges, a contradiction. Hence we can assume that $\left\{\left\|x_{n}\right\|\right\}$ tends to $+\infty$.

Let $\left\{x_{n_{j}} /\left\|x_{n_{j}}\right\|\right\}$ be a subsequence of $\left\{x_{n} /\left\|x_{n}\right\|\right\}$ converging weakly to a point x_{0} in H. For each $v \in H$ we have

$$
\left\langle\nabla J\left(x_{n_{j}}\right), v\right\rangle /\left\|x_{n_{j}}\right\|=\left(\int x_{n_{j}}^{\prime} v^{\prime}-g\left(x_{n_{j}}\right) v+p v\right) /\left\|x_{n_{j}}\right\| \rightarrow 0 .
$$

Therefore

$$
\begin{equation*}
\int\left(x_{0}^{\prime} v^{\prime}-\left(g\left(x_{n_{j}}\right) /\left\|x_{n_{j}}\right\|\right)\right) v \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{2.7}
\end{equation*}
$$

Because of (1.1) and (1.2) we have $g(x)=f_{1}(x)+f_{2}(x)$ where f_{1} is defined by $\left\{f_{1}(x)=x\right.$ for $x \geqslant 0$ and $f_{1}(x)=(1+\alpha) x$ for $\left.x \leqslant 0\right\}$, and f_{2} satisfies

$$
\begin{equation*}
\left(f_{2}(x)\right) / x \rightarrow 0 \quad \text { as }|x| \rightarrow+\infty \tag{2.8}
\end{equation*}
$$

Thus, we have

$$
\int\left(g\left(x_{n}\right) /\left\|x_{n}\right\|\right) v=\int f_{1}\left(x_{n} /\left\|x_{n}\right\|\right) v+\left(f_{2}\left(x_{n}\right) v\right) /\left\|x_{n}\right\|
$$

Because of (2.8) and (2.9) we obtain

$$
\int x_{0}^{\prime} v^{\prime}-f_{1}\left(x_{0}\right) v=0 \quad \text { for all } v \in H
$$

Therefore x_{0} satisfies $\left\{x_{0}^{\prime \prime}+f_{1}\left(x_{0}\right)=0, x(0)=x(\pi)=0\right\}$, which implies that $x_{0}=$ $\zeta \sin (t)$ for some $\zeta \geqslant 0$. In case $\zeta=0$, by (1.7) we have that given $\varepsilon>0$ there exists j_{0} such that

$$
\begin{equation*}
\int G\left(x_{n_{j}}(t)\right) d t \leqslant \varepsilon(1+2 \alpha)\left\|x_{n_{3}}\right\|^{2} / 2+M_{1} \pi \quad \text { for all } j \geqslant j_{0} \tag{2.9}
\end{equation*}
$$

From this inequality we have

$$
\begin{align*}
J\left(x_{n_{j}}\right) \geqslant & \left\|x_{n_{j}}\right\|^{2} / 2-\varepsilon(1+2 \alpha)\left\|x_{n_{j}}\right\|^{2} / 2-M_{1}\left\|x_{n_{j}}\right\| \\
& -\left\|x_{n_{j}}\right\| \int\left(p x_{n_{j}}\right) /\left\|x_{n_{j}}\right\| . \tag{2.10}
\end{align*}
$$

When $\varepsilon(1+2 \alpha)<1$ our assumption that $\left\|x_{n}\right\| \rightarrow \infty$ contradicts the boundedness of $\left\{\left\|J\left(x_{n}\right)\right\|\right\}$.

It remains to consider the case $\zeta>0$. Note that $\left\{g\left(x_{m}\right) /\left\|x_{m}\right\|\right\}$ converges in $L_{2}[0, \pi]$ to $f_{1}\left(x_{0}\right)$ and $g_{1}\left(x_{n} /\left\|x_{n}\right\|\right)$ converges to $g_{1}\left(x_{0}\right)$. We are assuming $\nabla J\left(x_{n}\right)=$ $x_{n}+g_{1}\left(x_{n}\right) \rightarrow 0$, so $\left\{x_{n_{j}} /\left\|x_{n}\right\|\right\}$ converges to x_{0}. Since x_{0} is positive on $(0, \pi)$ with $x^{\prime}(0)>0$ and $x^{\prime}(\pi)<0$, we have that there exists j_{1} and a real number c such that $x_{n_{j}}(t) \geqslant c$ for all $t \in[0, \pi]$ and all $j \geqslant j_{1}$. Thus, as $j \rightarrow \infty$,

$$
\begin{aligned}
\left(2 J\left(x_{n_{j}}\right)\right) /\left\|x_{n_{j}}\right\|= & \int\left(\left(x_{n_{j}^{\prime}}^{\prime}\right)^{2}+2 p x_{n_{j}}\right) /\left\|x_{n_{j}}\right\| \\
& -\left(\int_{x_{n_{j}}>0} x_{n_{j}}^{2}+\int_{x_{n_{j}}<0} G\left(x_{n_{j}}\right)\right) /\left\|x_{n_{j}}\right\| \rightarrow 0,
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle\nabla J\left(x_{n_{j}}\right), x_{n_{j}} /\left\|x_{n_{j}}\right\|\right\rangle= & \int\left(\left(x_{n_{j}}^{\prime}\right)^{2}+p x_{n_{j}}\right) /\left\|x_{n_{j}}\right\| \\
& -\left(\int_{x_{n_{j}}>0} x_{n_{j}}^{2}+\int_{x_{n_{j}}<0}\left(g\left(x_{n_{j}}\right) x_{n_{j}}\right)\right) /\left\|x_{n_{j}}\right\| \rightarrow 0
\end{aligned}
$$

By the hypotheses on $\left\{x_{n}\right\}$ we find $\left(\int p\left(x_{n j} /\left\|x_{n}\right\|\right)\right) \rightarrow 0$. Then by (2.1), ζ cannot be positive. This final contradiction implies that $\left\{x_{n}\right\}$ has a convergent subsequence and Theorem \mathbf{A} is proved.

Remark. With obvious modifications of the method above one can prove results analogous to Theorem A for other type of boundary conditions. For example, it can be shown that

$$
\text { (II) }\left\{\begin{array}{l}
u^{\prime \prime}+g(u(t))=p(t), \quad t \in[0, \pi] \\
u^{\prime}(0)=u^{\prime}(\pi)=0
\end{array}\right.
$$

has a solution if
$\left(1^{\prime}\right) g(u)=0$ for $u \geqslant 0$.
(11') for some $\alpha>0, g(u) / u \rightarrow \alpha$ as $u \rightarrow-\infty$.
(111') $\int p(t) d t<0$.

References

1. R. Adams, Sobolev spaces, Academic Press, New York, 1975.
2. L. Aguinaldo and K. Schmitt, On the boundary value problem $u^{\prime \prime}+u=\alpha u^{-}+p(t), u(0)=0=$ $u(\pi)$, Proc. Amer. Math. Soc. 68 (1978), 64-68.
3. S. Ahmad, A. C. Lazer and J. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), 933-944.
4. S. Fucik, Boundary value problems with jumping nonlinearities, Casopis Pěst. Mat. 101 (1976), 69-87.
5. P. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, M. R. C. Technical Report \# 1633, 1976.

Departamento de Matemáticas, C. I. E. A. del I. P. N., Apartado Postal 14-740, México 14, D. F., México

[^0]: Presented to the Society, January 25, 1979; received by the editors October 1, 1978 and, in revised form, April 2, 1979.
 AMS (MOS) subject classifications (1970). Primary 34B15, 58 E 05.
 Key words and phrases. Critical point, weak solution, jumping nonlinearities.

