LOCAL ERGODIC THEOREMS FOR NONCOMMUTING SEMIGROUPS

S. A. McGRATH

ABSTRACT. Let (X, μ) be a σ -finite measure space and $L_p(\mu)$, 1 , the usual Banach spaces of complex-valued functions. For <math>k = 1, 2, ..., n, let $\{T_k(t): t > 0\}$ be a strongly continuous semigroup of Dunford-Schwartz operators. If

$$f \in R_{n-1} = \bigg\{ g: \int_{|g|>t} |g/t| (\log|g/t|)^{n-1} d\mu < \infty \text{ for all } t > 0 \bigg\},$$

then

$$\frac{1}{\alpha_1\alpha_2\cdots\alpha_n}\int_0^{\alpha_n}\cdots\int_0^{\alpha_i}T_n(t_n)\cdots T_1(t_1)f(x)\,dt_1\cdots dt_n\to f(x)$$

 μ -a.e. as $\alpha_1 \ge 0, \ldots, \alpha_n \ge 0$ independently. If $f \in L_p(\mu)$, 1 , then the limit exists in norm as well as pointwise.

Introduction. Let (X, μ) be a complete, σ -finite measure space and let $L_p(\mu) = L_p(X, \mu)$, $1 \le p \le \infty$, be the usual Banach spaces of complex-valued functions. Let $\{T(t): t \ge 0\}$ be a strongly continuous semigroup of $L_1(\mu)$ contractions. This means that (i) T(t + s) = T(t)T(s), $s, t \ge 0$; (ii) $||T(t)||_1 \le 1, t \ge 0$; (iii) $f \in L_1(\mu)$ implies $||T(t)f - T(s)f||_1 \to 0$ as $s \to t$. We assume for simplicity that T(0) = I. A semigroup $\{T(t)\}$ of $L_1(\mu)$ contractions is a Dunford-Schwartz semigroup if $||T(t)||_{\infty} \le 1$ for all $t \ge 0$. It is a submarkovian semigroup if each T(t) is a positive operator, i.e. $f \in L_1^+(\mu)$ implies $T(t)f \in L_1^+(\mu)$ for all $t \ge 0$. A positive $L_1(\mu)$ semigroup $\{P(t)\}$ is said to dominate $\{T(t)\}$ if $P(t)|f| \ge |T(t)f|$ μ -a.e. for $f \in L_1(\mu)$ and $t \ge 0$.

The strong continuity of $\{T(t)\}$ permits us to define, for $\alpha > 0$ and $f \in L_1(\mu)$, the integral $\int_0^{\alpha} T(t)f dt$ as the L_1 -limit of Riemann sums. A more precise definition of $\int_0^{\alpha} T(t)f dt$ is required to investigate the pointwise convergence of $(1/\alpha)\int_0^{\alpha} T(t)f dt$. It is well known ([2], [8]) that given $f \in L_1(\mu)$ the vector T(t)f has a scalar representation T(t)f(x), defined on $R^+ \times X$ and measurable with respect to the product measure on $R^+ \times X$, such that T(t)f(x) is in the equivalence class of T(t)f for all $t \ge 0$. This representation is unique modulo sets of product measure zero. The scalar function T(t)f(x) is integrable with respect to the product measure on $R^+ \times X$. Additionally, there is a μ -null set E(f), independent of $\alpha > 0$, outside which $\int_0^{\alpha} T(t)f(x) dt$ exists and, as a function of x, is in the equivalence class of $\int_0^{\alpha} T(t)f dt$ for every $\alpha > 0$. We define

© 1980 American Mathematical Society 0002-9939/80/0000-0262/\$02.25

Received by the editors April 10, 1979.

AMS (MOS) subject classifications (1970). Primary 47D05, 28A65.

Key words and phrases. Local ergodic theorem, noncommuting semigroups, Dunford-Schwartz operators.

$$A(T, \alpha)f(x) = \frac{1}{\alpha}\int_0^{\alpha} T(t)f(x) dt$$

for all $\alpha > 0$ and $f \in L_1(\mu)$.

In [3] N. Fava showed that if $f \in R_{n-1}$ and $\{T_k(t): t \ge 0\}, k = 1, 2, ..., n$, are strongly continuous semigroups of positive Dunford-Schwartz operators, then

$$\frac{1}{\alpha_1\alpha_2\cdots\alpha_n}\int_0^{\alpha_n}\cdots\int_0^{\alpha_1}T_n(t_n)\cdots T_1(t_1)f(x)\ dt_1\cdots dt_n$$

converges μ -a.e. to a finite limit as $\alpha_1 \to \infty, \ldots, \alpha_n \to \infty$ independently. The class

$$R_n = \left\{ f: \int_{|f|>t} |f/t| (\log|f/t|)^n \, d\mu < \infty \text{ for all } t > 0 \right\}$$

is a subspace of $L_1(\mu) + L_{\infty}(\mu)$ and satisfies $L_1(\mu) + L_{\infty}(\mu) \supset R_0 \supset R_1 \supset R_2$ $\supset \cdots$. Also, for any 1 and <math>n > 0, $L_p(\mu) \subset R_n$. Finally, $R_n = L(\log^+ L)^n$, for all n > 0, when $\mu(X) < \infty$. These facts are established in [3].

In this note a local ergodic theorem is established: if $\{T_k(t)\}, k = 1, 2, ..., n$, are strongly continuous semigroups of Dunford-Schwartz operators and $f \in R_{n-1}$, then

$$\frac{1}{\alpha_1 \cdots \alpha_n} \int_0^{\alpha_n} \cdots \int_0^{\alpha_1} T_n(t_n) \cdots T_1(t_1) f(x) dt_1 \cdots dt_n \to f(x) \quad \mu\text{-a.e.} \quad (*)$$

as $\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0$ independently. For notational convenience we denote the integral in (*) by $A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x)$. Local ergodic theorems for single L_1 contraction semigroups have been established in ([4], [5], [6], [8], [9]). T. Terrell [10] extended the local ergodic theorem for one-parameter submarkovian semigroups to the *n*-parameter case. He showed that if $f \in L_1(\mu)$ then

$$\lim_{\alpha \to 0} (1/\alpha)^n \int_0^{\alpha} \cdots \int_0^{\alpha} T(t_1, \ldots, t_n) f(x) dt_1 \cdots dt_n = f(x) \quad \mu\text{-a.e.}$$

He pointed out that if it is assumed only that $f \in L_1(\mu)$ then (*) may fail (even if the semigroups commute).

Main results. If $\{T(t): t > 0\}$ is a strongly continuous $L_1(\mu)$ semigroup of Dunford-Schwartz operators then a scalar representation T(t)f(x) exists for any $f \in L_p(\mu)$, $1 \le p \le \infty$ ([2, pp. 196–198]). However R_n is not contained in the linear span of $\bigcup_{1 \le p \le \infty} L_p(\mu)$ [3]. Before proving our ergodic theorem we must show that a scalar representation exists for functions in R_0 .

1. LEMMA. Let (X, μ) be a complete, σ -finite measure space and let $\{T(t)\}$ be a strongly continuous $L_1(\mu)$ contraction semigroup such that for all t > 0, $||T(t)f||_{\infty} \le ||f||_{\infty}$, $f \in L_1(\mu) \cap L_{\infty}(\mu)$. Then $\{T(t)\}$ may be extended to a Dunford-Schwartz semigroup and the domain of definition of the scalar representation of $\{T(t)\}$ may be extended from $L_1(\mu)$ to $L_1(\mu) + L_{\infty}(\mu)$.

PROOF. Let $\{P(t): t \ge 0\}$ be a strongly continuous submarkovian semigroup which dominates $\{T(t): t \ge 0\}$ ([4], [6]). If $f \in L_1^+(\mu)$ then $P: f \to e^{-t}P(t)f(x)$ defines a linear contraction mapping from $L_1(\mu)$ to $L_1(R^+ \times X, d\rho)$, where $d\rho = dt \times d\mu$. This mapping is a positive contraction since if $f \ge 0$ μ -a.e. then $P(t)f \ge 0$ μ -a.e. for all t > 0 implies $Pf > 0 \rho$ -a.e. by Fubini's theorem. Consequently P may be extended to the cone of positive measurable functions on X [7]. We denote the extension of P by \hat{P} .

Choose $f \in L_{\infty}^{+}(\mu)$ and let f_k (k = 1, 2, ...) be a sequence of functions in $L_1^{+}(\mu) \cap L_{\infty}^{+}(\mu)$ with $f_k(x) \nearrow f(x)$ μ -a.e. as $k \to \infty$. Then $\hat{P}f(t, x) = \lim_{k\to\infty} e^{-t}P(t)f_k(x)$, since \hat{P} has the monotone continuity property. We have $|\hat{P}f(t, x)| < \infty \rho$ -a.e. since $\|\hat{P}g\|_{\infty} \leq \|g\|_{\infty}$ for all $g \in L_{\infty}^{+}(\mu)$. Consequently the sequence $\{T(t)f_k(x)\}$ is Cauchy μ -a.e. since

$$|T(t)f_{k+j}(x) - T(t)f_k(x)| \le |P(t)f_{k+j}(x) - P(t)f_k(x)|.$$

Set $\hat{T}(t)f(x) = \lim_{k\to\infty} T(t)f_k(x)$, $f \in L_{\infty}^+(\mu)$. It is not difficult to show that our definition is independent, modulo ρ -null sets, of the particular sequence $\{f_k\}$ converging to f. Extend now $\hat{T}(t)f(x)$ to $L_{\infty}(\mu)$ by linearity. If we set $T(t)f = \hat{T}(t)f(\cdot)$, $f \in L_{\infty}(\mu)$, then we have extended $\{T(t)\}$ to a Dunford-Schwartz semigroup and $\hat{T}(t)f(x)$ is in the equivalence class of T(t)f for all t > 0 and $f \in L_{\infty}(\mu)$. One can see that given $f \in L_{\infty}(\mu)$, there exists a μ -null set E(f), independent of $\alpha > 0$, outside of which $\int_0^{\alpha} \hat{T}(t)f(x) dt$ exists and is finite. If $f \in L_1(\mu) \cap L_{\infty}(\mu)$ then $\hat{T}(t)f(x)$ and T(t)f(x) are equivalent scalar representations of T(t)f. Finally, if f = g + h, where $g \in L_1(\mu)$ and $h \in L_{\infty}(\mu)$, we define

$$T(t)f(x) = \hat{T}(t)g(x) + \hat{T}(t)h(x).$$

We note that this definition of T(t)f(x) is independent, modulo a ρ -null set, of the particular g and h chosen for the representation of f.

2. THEOREM. Let (X, μ) be a complete, σ -finite measure space and let $\{T_k(t): t \ge 0\}$, k = 1, 2, ..., n, be strongly continuous $L_1(\mu)$ contraction semigroups such that, for all $t \ge 0$ and $f \in L_1(\mu) \cap L_{\infty}(\mu)$, $||T_k(t)f||_{\infty} \le ||f||_{\infty}$. If $f \in L_p(\mu)$, $1 , then <math>A(T_n, \alpha_n) \cdots A(T_1, \alpha_1)f(x) \rightarrow f(x)$ both in norm and pointwise as $\alpha_1 \ge 0, \ldots, \alpha_n \ge 0$ independently.

PROOF. By Lemma 1 each $\{T_k(t)\}$ may be regarded as a Dunford-Schwartz semigroup. As pointed out in [2], $\{T_k(t)\}$ is a strongly continuous semigroup of $L_p(\mu)$ contractions for $1 . If <math>f \in L_p(\mu)$ and if $f_k^*(x)$ denotes $\sup_{\alpha_k > 0} |(1/\alpha)f_0^{\alpha} T_k(t)f(x) dt|$, then $||f_k^*||_p < (p/(p-1))||f||_p$ by Theorem VIII.7.7 in [2]. Since $L_1(\mu) \cap L_p(\mu)$ is dense in $L_p(\mu)$ and $\lim_{\alpha_k > 0} A(T_k, \alpha_k)f(x) = f(x)$ μ -a.e. for all $f \in L_1(\mu) \cap L_p(\mu)$ by Ornstein's theorem [8, p. 108], it follows from Banach's convergence principle [2, Theorem IV.11.3] that, for each k, $\lim_{\alpha_k > 0} A(T_k, \alpha_k)f(x)$ exists and is finite μ -a.e. as $\alpha_k > 0$ through some countable set, say Q^+ , the set of positive rationals. Since $A(T_k, \alpha_k)f(x)$ depends continuously on α_k for a.e. x, we have $\lim_{\alpha_k > 0} A(T_k, \alpha_k)f(x)$ exists and is finite μ -a.e. follows from the strong continuity of $\{T(t)\}$ at t = 0.

Now consider the convergence of
$$A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x)$$
. Since
 $|A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x) - f(x)|$
 $\leq \sum_{k=1}^{n-1} |A(T_n, \alpha_n) \cdots A(T_{k+1}, \alpha_{k+1}) [A(T_k, \alpha_k) f(x) - f(x)]|$
 $+ |A(T_n, \alpha_n) f(x) - f(x)|,$

our result is established if we can show

$$A(T_n, \alpha_n) \cdots A(T_{k+1}, \alpha_{k+1}) [A(T_k, \alpha_k)f(x) - f(x)] \rightarrow 0 \qquad \mu\text{-a.e.}$$

for k = 1, 2, ..., n - 1. If $\{P_1(t)\}, ..., \{P_k(t)\}$ are strongly continuous semigroups of positive Dunford-Schwartz operators which dominate, respectively, $\{T_1(t)\}, ..., \{T_n(t)\}$, then

$$|A(T_n, \alpha_n) \cdots A(T_{k+1}, \alpha_{k+1})[A(T_k, \alpha_k)f(x) - f(x)]|$$

$$\leq A(P_n, \alpha_n) \cdots A(P_{k+1}, \alpha_{k+1})[|A(T_k, \alpha_k)f(x) - f(x)|].$$

We have

$$\|A(P_n, \alpha_n) \cdots A(P_{k+1}, \alpha_{k+1}) [A(T_k, \alpha_k) f(x) - f(x)]\|_p$$

$$\leq ((p-1)/p)^{n-k} \|A(T_k, \alpha_k) f(x) - f(x)\|_p, \quad k = 1, 2, ..., n-1.$$

Consequently, given $\varepsilon > 0$,

$$\mu\left\{\lim_{\alpha_{1}\searrow0,\ldots,\alpha_{n}\searrow0}\left|A(T_{n},\alpha_{n})\cdots A(T_{k+1},\alpha_{k+1})\left[A(T_{k},\alpha_{k})f(x)-f(x)\right]\right|>\varepsilon\right\}$$

$$\leq \left(\frac{1}{\varepsilon}\right)^{p}\left[\left(\frac{p}{p-1}\right)^{p}\right]^{n-k}\cdot\left\|A(T_{k},\alpha_{k})f(\cdot)-f\right\|_{p}^{p} \text{ for any } \alpha_{k}>0.$$

Since $||A(T_k, \alpha_k)f - f||_p^p \to 0$ as $\alpha_k \searrow 0$ by dominated convergence, we have

$$A(T_n, \alpha_n) \cdot \cdot \cdot A(T_{k+1}, \alpha_{k+1}) \big[A(T_k, \alpha_k) f(x) - f(x) \big] \to 0$$

 μ -a.e. as $\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0$ independently. The norm convergence of $A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f$ follows from dominated convergence. \Box

3. THEOREM. Let $\{T_k(t)\}, k = 1, 2, ..., n$, be strongly continuous $L_1(\mu)$ contraction semigroups such that $||T_k(t)f||_{\infty} \leq ||f||_{\infty}, f \in L_1(\mu) \cap L_{\infty}(\mu)$. Then

$$\lim_{\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0} A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x) = f(x) \quad \mu\text{-a.e.}$$

for $f \in R_{n-1}$.

PROOF. For $f \in R_{n-1}$, set

$$\omega(f) = \limsup_{\substack{\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0}} A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x)$$
$$- \liminf_{\substack{\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0}} A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x).$$

Choose a sequence f_k (k = 1, 2, ...) of functions in $L_p(\mu)$, $1 , with <math>f_k(x) \to f(x) \mu$ -a.e. and $|f - f_k| \le |f|$ for all k. Then

$$\omega(f) \leq \omega(f - f_k) + \omega(f_k) \leq \omega(f - f_k)$$

by the preceding theorem. So $\omega(f) \le \omega(f - f_k) \le 2(f - f_k)^*$, where

$$(f-f_k)^*(x) = \sup_{\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0} |A(T_n, \alpha_n) \cdots A(T_1, \alpha_1)(f-f_k)(x)|.$$

Since the semigroups $\{T_1(t)\}, \ldots, \{T_n(t)\}\$ are dominated by positive Dunford-Schwartz semigroups, it follows from Fava's dominated estimate [3] that

$$\mu\{\omega(f) > 8t\} \le \mu\{(f - f_k)^* > 4t\}$$

$$\le C_{n-1} \int_{|f - f_k| > t} \left| \frac{f - f_k}{t} \left| \left(\log \left| \frac{f - f_k}{t} \right| \right)^{n-1} d\mu \text{ for any } t > 0.$$

The integral approaches zero as $k \to \infty$ by dominated convergence. Thus $\mu\{\omega(f) > 8t\} = 0$ for all t > 0, and so $\lim_{\alpha_1 \to 0, \dots, \alpha_n \to 0} A(T_n, \alpha_n)A(T_{n-1}, \alpha_{n-1}) \cdots A(T_1, \alpha_1)f(x)$ exists and is finite μ -a.e. Setting

$$\tilde{f}(x) = \lim_{\alpha_1 \searrow 0, \ldots, \alpha_n \searrow 0} A(T_n, \alpha_n) \cdots A(T_1, \alpha_1) f(x),$$

we have

$$\mu\{(\tilde{f}-f_k) > 4t\} = \mu\{\lim_{\alpha_1 \searrow 0, \dots, \alpha_n \searrow 0} A(T_n, \alpha_n) \cdots A(T_1, \alpha_1)(f-f_k) > 4t\}$$

 $\leq \mu\{(f-f_k)^* > 4t\}$
 $\leq C_{n-1} \int_{|f-f_k| > t} \left| \frac{f-f_k}{t} \left| \left(\log \left| \frac{f-f_k}{t} \right| \right)^{n-1} d\mu. \right.$

Likewise

$$\mu\{(f_k - \tilde{f}) > 4t\} \leq C_{n-1} \int_{|f - f_k| > t} \left| \frac{f - f_k}{t} \left| \left(\log \left| \frac{f - f_k}{t} \right| \right)^{n-1} d\mu \right| \right| d\mu$$

These two inequalities imply $f_k \to \tilde{f}$ in μ -measure. By Corollary III.6.13 in [2], there exists a subsequence $\{f_{n_k}\}$ which converges to $\tilde{f} \mu$ -a.e. Since $f_k \to f$ pointwise, we must have $\tilde{f}(x) = f(x) \mu$ -a.e.

Since $L_1(\mu)$ is strictly contained in R_0 , the preceding theorem for the case n = 1 yields a slight generalization of Ornstein's local ergodic theorem [8].

References

1. M. Akcoglu and R. Chacon, A local ratio theorem, Canad. J. Math. 22 (1970), 545-552.

2. N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1958.

3. N. Fava, Weak type inequalities for product operators, Studia Math. 42 (1972), 271-288.

4. C. Kipnis, Majoration des semi-groupes de contractions de L_1 et applications, Ann. Inst. H. Poincaré Sect. B 10 (1974), 369-384.

5. U. Krengel, A local ergodic theorem, Invent. Math. 6 (1969), 329-333.

6. Y. Kubokawa, Ergodic theorems for contraction semigroups, J. Math. Soc. Japan 27 (1975), 184-193.

7. J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, Calif., 1965.

8. D. Ornstein, The sums of iterates of a positive operator, Advances in Probability and Related Topics (P. Ney, ed.), vol. 2, Dekker, New York, 1970, pp. 87-115.

9. R. Sato, On a local ergodic theorem, Studia Math. 58 (1976), 1-5.

10. T. Terrell, Local ergodic theorems for n-parameter semigroups of operators, Lecture Notes in Math., vol. 160, Springer-Verlag, Berlin and New York, 1970, pp. 262-278.

SPERRY SYSTEMS MANAGEMENT, GREAT NECK, NEW YORK 11020

216