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P = R FOR MAPS OF THE INTERVAL
ETHAN M. COVEN AND G. A. HEDLUND

ABSTRACT. We show that for continuous maps of a compact interval to itself the
closure of the set of periodic points coincides with the closure of the set of
recurrent points.

Let f: I — I be a continuous map of a compact interval to itself. Let P be the set
of periodic points and R the set of recurrent points. The main result of this paper is

THEOREM 1. For continuous maps of a compact interval to itself, P = R.

Special cases of this theorem have been proved by L. Block [Bl] (for maps with
finite nonwandering set), by the authors [CH] (for maps whose set of periodic
points is closed) and by L.-S. Young [Y] (for piecewise monotonic maps).

As a corollary, we show that in some sense all of the interesting dynamical
behavior of f occurs on P.

Let NW be the set of nonwandering points and W the set of wandering points.
We show (Theorem 2) that W is open and dense in I — P and hence that NW — P
is nowhere dense in 1. For an example in which NW — P # &, see [Y].

Recall that P = {x|f*(x) = x for some n > 1}, R = {x| for each neighborhood
U of x, f*(x) € U for some n > 1}. Clearly P C R and both sets are invariant, i.e.,
f(P) C P and f(R) C R. It is well known [ES] that for every n > 1, x € R if and
only if x is recurrent under f".

To prove Theorem 1 it is sufficient to show that J N R = J for every compo-
nent J of I — P. For then R C P and the result follows. We shall do this with the
aid of a series of lemmas.

Lemma 1 is an immediate consequence of the Intermediate Value Theorem.

LEMMA 1. Let J be an interval such that J N P = . Then for each n > 1, either
S (x) > x for all x € J or f(x) < x for all x € J.

The components of I — P are intervals which are open in I. Lemmas 2-4 give
conditions which are sufficient for such an interval to contain no recurrent points.

LEMMA 2. Let J be an interval which is open in I. If for some n > 1, either

fn(x) > x for all x € J and all k > 1, or f*(x) < x for all x € J and all k > 1,
thenJ N R=0.

Proor. It suffices to show that no point of J is recurrent under f”, for then [ES]
no point of J is recurrent.
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Let x € J. If f*(x) & J for all k > 1, then since J is open, x is not recurrent
under f*. Suppose then that k > 1 is the least positive integer such that f**(x) € J.
Without loss of generality, f*(x) > x. Then f"(x) > f¥(x) > x for all j > k.
Hence if U =J N (— o0, f*(x)), then f™(x) & U for all m > 1. Thus x is not
recurrent under f*. [J

LEMMA 3. Let J be an interval which is open in 1. If J N P = & and f"(J) C J for
somen > 1,thenJ N R =4.

PrOOF. Let x € J. Since J N P = I, f*(x) # x. Without loss of generality,
f"(x) > x and hence by Lemma 1, f*(y) >y for all y € J. Since f**(x) € J for all
k> 1, f'x)>f* Dx)>-.. >x. Again by Lemma 1, f*(y) >y for all
yE€Jandalk > 1.Bylemma2,J "N R=4. O

LEMMA 4. Let J be an interval which is openin I. If J N P =D and f*(J) N P #
D for somen > 1,thenJ N R = <.

PROOF. Suppose x € J and f"(x) € P. Choose m > n so that f™*"(x) = f(x).
Without loss of generality, f™(x) > x. Then for all k¥ > 1, f*"(x) = f™(x) > x and
hence by Lemma 1, f*"(y) >y for all y €J and all k > 1. By Lemma 2,
JNR=G. OJ

To complete the proof of Theorem 1, let J be a component of I — P. We show
that/ N R=4.

If f"(JYN J = for all n > 1, then since J is open, J N R=D. If f*(J)C J
for some n > 1, then by Lemma 3,/ N R = . Suppose then that for some n > 1,
ffUOnNJ#=Band f"JU)NU -J)#=D.

Since f"(J) is an interval, it contains an endpoint g of J, ¢ & J. If ¢ € P, then by
Lemma 4, J N R = . Suppose then that g & P. Without loss of generality,
Sf"(x) > x for all x € J and hence by Lemma 1 forallx € J' =J U {q}. Thus g is
the right-hand endpoint of J and f*(q) > g. Therefore f”(J) contains points greater
than ¢ and points less than g, and hence all points sufficiently close to g. Since
q € P, there are points of P arbitrarily close to g. Hence f"(J) N P # & and so by
Lemmad,/J N R =d.

This completes the proof of Theorem 1.

Recall that

NW = {x| for every neighborhood U of x,
ff(U)n U +# Dforsomen > 1},
W=1- NW.

Clearly R C NW, NW is closed and invariant and f| |§ is pointwise nonwandering.
Let X, = I. For a a successor ordinal, let X, be the nonwandering set of f|X,_,.
For a a limit ordinal, let X, = N z_,Xz. There exists a countable ordinal y such
that X, = X, ,, = - - - . (This construction is due to G. D. Birkhoff [Bi, Chapter
VII] who used it to define the set of “central motions” of a dynamical system. For
this reason, we call X, the Birkhoff center of f.) By [GH, 7.20] X, = R. It follows
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that if E is a closed invariant subset with the property that f|E is pointwise
nonwandering, then E C R.

It follows from the construction above and repeated applications of the fact that
p(fINW) = 1 for every invariant measure p that p(R) = 1 for any such measure.
Then by the Sup Theorem for topological entropy [D}, A(f) = h(f| R).

Therefore we have the following corollary to Theorem 1.

COROLLARY. For continuous maps of a compact interval to itself,

(1) Every minimal set is contained in P.

() f|P is pointwise nonwandering. No larger closed invariant subset has this
property.

(3) w(P) =1 for every (normalized) invariant measure p. No smaller closed
invariant subset has this property .

@ h(f) = h(f |F) where h( ) denotes topological entropy.

THEOREM 2. For continuous maps of a compact interval to itself, W is open and
dense in I — P, and NW — P is nowhere dense in I.

To prove Theorem 2, it suffices to show that W is dense in I — P.
LEMMA 5. Let K be an interval which is open in I. If K C NW, then [ (K)]° # O.

ProOF. If not, then f{K) is a point, call it x. Since K is open and K C NW,
f(K)N K # & for some n > 1. Thus f"~!(x) € K and hence f"(x) = x. Let
U=K-{x,...,f""'(x)}. Then @ # U C NW, Uis open and f"(U)N U=
for all m > 1. This is a contradiction. []

It follows easily from Lemma 5 that (NW)° is invariant. Since f|(NW)° is
pointwise nonwandering, (NW)° C R = P. Therefore W is dense in I — P.
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