$\overline{P} = \overline{R}$ FOR MAPS OF THE INTERVAL

ETHAN M. COVEN AND G. A. HEDLUND

ABSTRACT. We show that for continuous maps of a compact interval to itself the closure of the set of periodic points coincides with the closure of the set of recurrent points.

Let $f: I \to I$ be a continuous map of a compact interval to itself. Let P be the set of periodic points and R the set of recurrent points. The main result of this paper is

THEOREM 1. For continuous maps of a compact interval to itself, $\overline{P} = \overline{R}$.

Special cases of this theorem have been proved by L. Block [BI] (for maps with finite nonwandering set), by the authors [CH] (for maps whose set of periodic points is closed) and by L.-S. Young [Y] (for piecewise monotonic maps).

As a corollary, we show that in some sense all of the interesting dynamical behavior of f occurs on \overline{P} .

Let NW be the set of nonwandering points and W the set of wandering points. We show (Theorem 2) that W is open and dense in $I - \overline{P}$ and hence that $NW - \overline{P}$ is nowhere dense in I. For an example in which $NW - \overline{P} \neq \emptyset$, see [Y].

Recall that $P = \{x | f^n(x) = x \text{ for some } n \ge 1\}$, $R = \{x | \text{ for each neighborhood } U \text{ of } x, f^n(x) \in U \text{ for some } n \ge 1\}$. Clearly $P \subseteq R$ and both sets are invariant, i.e., $f(P) \subseteq P$ and $f(R) \subseteq R$. It is well known [ES] that for every $n \ge 1$, $x \in R$ if and only if x is recurrent under f^n .

To prove Theorem 1 it is sufficient to show that $J \cap R = \emptyset$ for every component J of $I - \overline{P}$. For then $R \subseteq \overline{P}$ and the result follows. We shall do this with the aid of a series of lemmas.

Lemma 1 is an immediate consequence of the Intermediate Value Theorem.

LEMMA 1. Let J be an interval such that $J \cap P = \emptyset$. Then for each $n \ge 1$, either $f^n(x) > x$ for all $x \in J$ or $f^n(x) < x$ for all $x \in J$.

The components of $I - \overline{P}$ are intervals which are open in *I*. Lemmas 2-4 give conditions which are sufficient for such an interval to contain no recurrent points.

LEMMA 2. Let J be an interval which is open in I. If for some $n \ge 1$, either $f^{kn}(x) \ge x$ for all $x \in J$ and all $k \ge 1$, or $f^{kn}(x) < x$ for all $x \in J$ and all $k \ge 1$, then $J \cap R = \emptyset$.

PROOF. It suffices to show that no point of J is recurrent under f^n , for then [ES] no point of J is recurrent.

© 1980 American Mathematical Society 0002-9939/80/0000-0283/\$01.75

Received by the editors June 12, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54H20.

Let $x \in J$. If $f^{kn}(x) \notin J$ for all $k \ge 1$, then since J is open, x is not recurrent under f^n . Suppose then that $k \ge 1$ is the least positive integer such that $f^{kn}(x) \in J$. Without loss of generality, $f^{kn}(x) \ge x$. Then $f^{jn}(x) \ge f^{kn}(x) \ge x$ for all $j \ge k$. Hence if $U = J \cap (-\infty, f^{kn}(x))$, then $f^{mn}(x) \notin U$ for all $m \ge 1$. Thus x is not recurrent under f^n . \Box

LEMMA 3. Let J be an interval which is open in I. If $J \cap P = \emptyset$ and $f^n(J) \subseteq J$ for some $n \ge 1$, then $J \cap R = \emptyset$.

PROOF. Let $x \in J$. Since $J \cap P = \emptyset$, $f^n(x) \neq x$. Without loss of generality, $f^n(x) > x$ and hence by Lemma 1, $f^n(y) > y$ for all $y \in J$. Since $f^{kn}(x) \in J$ for all $k \ge 1$, $f^{kn}(x) > f^{(k-1)n}(x) > \cdots > x$. Again by Lemma 1, $f^{kn}(y) > y$ for all $y \in J$ and all $k \ge 1$. By Lemma 2, $J \cap R = \emptyset$. \Box

LEMMA 4. Let J be an interval which is open in I. If $J \cap P = \emptyset$ and $f^n(J) \cap P \neq \emptyset$ for some $n \ge 1$, then $J \cap R = \emptyset$.

PROOF. Suppose $x \in J$ and $f^n(x) \in P$. Choose m > n so that $f^{m+n}(x) = f^n(x)$. Without loss of generality, $f^m(x) > x$. Then for all k > 1, $f^{km}(x) = f^m(x) > x$ and hence by Lemma 1, $f^{km}(y) > y$ for all $y \in J$ and all k > 1. By Lemma 2, $J \cap R = \emptyset$. \Box

To complete the proof of Theorem 1, let J be a component of $I - \overline{P}$. We show that $J \cap R = \emptyset$.

If $f^n(J) \cap J = \emptyset$ for all $n \ge 1$, then since J is open, $J \cap R = \emptyset$. If $f^n(J) \subseteq J$ for some $n \ge 1$, then by Lemma 3, $J \cap R = \emptyset$. Suppose then that for some $n \ge 1$, $f^n(J) \cap J \neq \emptyset$ and $f^n(J) \cap (I - J) \neq \emptyset$.

Since $f^n(J)$ is an interval, it contains an endpoint q of J, $q \notin J$. If $q \in P$, then by Lemma 4, $J \cap R = \emptyset$. Suppose then that $q \notin P$. Without loss of generality, $f^n(x) > x$ for all $x \in J$ and hence by Lemma 1 for all $x \in J' = J \cup \{q\}$. Thus q is the right-hand endpoint of J and $f^n(q) > q$. Therefore $f^n(J)$ contains points greater than q and points less than q, and hence all points sufficiently close to q. Since $q \in \overline{P}$, there are points of P arbitrarily close to q. Hence $f^n(J) \cap P \neq \emptyset$ and so by Lemma 4, $J \cap R = \emptyset$.

This completes the proof of Theorem 1. Recall that

 $NW = \{x | \text{ for every neighborhood } U \text{ of } x, \\ f^n(U) \cap U \neq \emptyset \text{ for some } n \ge 1\}, \\ W = I - NW.$

Clearly $R \subseteq NW$, NW is closed and invariant and $f|\overline{R}$ is pointwise nonwandering.

Let $X_0 = I$. For α a successor ordinal, let X_{α} be the nonwandering set of $f|X_{\alpha-1}$. For α a limit ordinal, let $X_{\alpha} = \bigcap_{\beta < \alpha} X_{\beta}$. There exists a countable ordinal γ such that $X_{\gamma} = X_{\gamma+1} = \cdots$. (This construction is due to G. D. Birkhoff [**Bi**, Chapter VII] who used it to define the set of "central motions" of a dynamical system. For this reason, we call X_{γ} the *Birkhoff center* of f.) By [**GH**, 7.20] $X_{\gamma} = \overline{R}$. It follows that if E is a closed invariant subset with the property that f|E is pointwise nonwandering, then $E \subseteq \overline{R}$.

It follows from the construction above and repeated applications of the fact that $\mu(f|NW) = 1$ for every invariant measure μ that $\mu(\overline{R}) = 1$ for any such measure. Then by the Sup Theorem for topological entropy [D], $h(f) = h(f|\overline{R})$.

Therefore we have the following corollary to Theorem 1.

COROLLARY. For continuous maps of a compact interval to itself,

(1) Every minimal set is contained in P.

(2) $f|\overline{P}$ is pointwise nonwandering. No larger closed invariant subset has this property.

(3) $\mu(\vec{P}) = 1$ for every (normalized) invariant measure μ . No smaller closed invariant subset has this property.

(4) h(f) = h(f|P) where h() denotes topological entropy.

THEOREM 2. For continuous maps of a compact interval to itself, W is open and dense in $I - \overline{P}$, and $NW - \overline{P}$ is nowhere dense in I.

To prove Theorem 2, it suffices to show that W is dense in $I - \overline{P}$.

LEMMA 5. Let K be an interval which is open in I. If $K \subseteq NW$, then $[f(K)]^{\circ} \neq \emptyset$.

PROOF. If not, then f(K) is a point, call it x. Since K is open and $K \subseteq NW$, $f^n(K) \cap K \neq \emptyset$ for some $n \ge 1$. Thus $f^{n-1}(x) \in K$ and hence $f^n(x) = x$. Let $U = K - \{x, \ldots, f^{n-1}(x)\}$. Then $\emptyset \neq U \subseteq NW$, U is open and $f^m(U) \cap U = \emptyset$ for all $m \ge 1$. This is a contradiction. \square

It follows easily from Lemma 5 that $\overline{(NW)^{\circ}}$ is invariant. Since $f|\overline{(NW)^{\circ}}$ is pointwise nonwandering, $\overline{(NW)^{\circ}} \subseteq \overline{R} = \overline{P}$. Therefore W is dense in $I - \overline{P}$.

REFERENCES

[Bi] G. D. Birkhoff, *Dynamical systems*, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R.I., 1927.

[BI] L. Block, Continuous maps of the interval with finite nonwandering set, Trans. Amer. Math. Soc. 240 (1978), 221-230.

[CH] E. M. Coven and G. A. Hedlund, Continuous maps of the interval whose periodic points form a closed set, Proc. Amer. Math. Soc. (to appear).

[D] E. I. Dinaburg, The relation between topological entropy and metric entropy, Soviet Math. Dokl. 11 (1970), 13-16.

[ES] P. Erdös and A. H. Stone, Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. 51 (1948), 126-130.

[GH] W. H. Gottschalk and G. A. Hedlund, *Topological dynamics*, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1955.

[Y] L.-S. Young, A closing lemma on the interval, Invent. Math. 54 (1979), 179-187.

DEPARTMENT OF MATHEMATICS, WESLEYAN UNIVERSITY, MIDDLETOWN, CONNECTICUT 06457