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GOLDIE CONDITIONS IN FINITE NORMALIZING EXTENSIONS

CHARLES LANSKI

Abstract. Let S be a finite normalizing extension of a ring R. If M is an S

module, then M has finite uniform dimension if and only if it has finite uniform

dimension when considered asan fi module. Consequently, when 5 is a right

Goldie ring, R is also a right Goldie ring. Conversely, if R is a semiprime right

Goldie ring and S is a prime ring, then S is a Goldie ring. Finally, when both S

and R are semiprime right Goldie rings, the quotient ring of R embeds in the

quotient ring of S.

In this paper we consider a finite normalizing extension 5 of a ring R, and

determine when the Goldie chain conditions transfer from one ring to the other.

Results on chain conditions for this kind of extension have been obtained by

Formanek and Jategaonkar [1], who showed that S modules are Noetherian as R

modules exactly when they are Noetherian as S modules; by Lemonnier [3], who

proved a similar result for the Krull dimension of S modules; and by Fisher,

Lanski, and Park [2], who proved the corresponding theorem for Gabriel dimen-

sion. In the case that S is a finite centralizing extension of R, Robson and Small [4]

have obtained a number of results on chain conditions, as well as other properties

of such extensions.

Throughout the paper, S will denote a finite normalizing extension of a ring R.

Thus S = 27_i s¡R with s, m ls >■ lK and s¡R = Rs¡ for each i. All modules will

be right uni tal modules. For an R submodule N of an S module M, set N' =

Our first result is on finite uniform dimension and uses an idea of Lemonnier [3]

to build S modules from R modules in n successive steps. This theorem was

obtained independently by J. C. Robson.

Theorem 1. Any S module M has finite uniform dimension if and only if it has

finite uniform dimension when considered as an R module.

Proof. Since any S submodule of M is also an R submodule, if MR has finite

uniform dimension, then Ms must have finite uniform dimension. For the other

direction, we prove that any infinite direct sum of nonzero R submodules of M

gives rise to an infinite direct sum of nonzero S submodules of M.

Let {N¡\i = 1, 2, . . . } be a collection of nonzero R submodules of M so that

2 AT' is a direct sum of the R modules {N¡'}, for some t < n. Consider first the

possibility that C2N¡')st~^.\ n "2N¡ = 0. In particular, N¡sl+X ¥=0 for each i, and
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(2AU+1) n ZJV/ = 0. If 2Nisl+x is a direct sum of {N¡st+X}, then 2A7/"1"1 =

2(A7/ + NiSl+x) is direct. Should ~S,N¡sl+, not be direct, then for some A:, and

n¡ G N¡ one must have nk+xsi+x = 2^-i n,J/+i ^ 0. But then n¿+, — nx

— ■ • ■ —nk G (ZN¡')st1xx nEiVj = 0, contradicting the assumption that 2A7,' is

direct. Since we wish to produce an infinite collection of nonzero R submodules

{A7,} so that 2A//+1 is direct, we may now assume that for any infinite subcollec-

tion {#.} of our original set {A7,}, that (SA^H+'i n 2JV, # 0. Thus, for anyp > 0

there is y £ Np+l © • • • ®Nk,y ¥= 0, and ysl+x G N¿+x © • • • ©A/¿. Let ? =

max(A:, m) and set If = (Np+X © • • • ®Nq)n (%'+, © • • • ©A^'KiV Note that

Wj- 0 since y £ W, and that H7'"1"1 c JVy+i © • • • ®N'q. This observation ena-

bles one to produce an infinite collection of nonzero R submodules { W¡) of M so

that 2ZW¡'+X is direct. Therefore, repetition of the argument above at most n — t

times gives an infinite set of nonzero R submodules {M¡) of M so that 2M" is

direct. But M" = M¡S is an S submodule of M, so the proof of the theorem is

complete.

As an immediate consequence of Theorem 1, one has

Theorem 2. If S is a right Goldie ring, then R is a right Goldie ring.

The converse to Theorem 2 is false, even when R is a prime ring and S is a

semiprime ring. The following example shows that in such a situation S need not

satisfy either Goldie chain condition.

Example 1. Let R = F[X], the polynomial ring over a field F in the infinite set

of indeterminates X = {xx, x2, . . . }. If / is the ideal of R generated by {x,x.\i ¥=

j), set S = R[y]/J, forJ the ideal of R[y] generated byy2 — y and y I. Identifying

R with its image in S, one has

S=R + Ry = R+yF+^ ^i^t^,]-
i

It is easy to see that S is a semiprime ring, that Syx¡ = yx¡F[x¡], and that 2,-Sy.x, is

direct.

Even when S is a semiprime Goldie ring and R is a prime Goldie ring, there

seems to be no reasonable relation between the uniform dimensions of R and of S,

and the number of generators of S as an R module. To demonstrate this, we

present an easy example shown to us by R. Resco.

Example 2. For Z the ring of integers, let S = Z ® (Z/mZ), and set R =

Z(l, I) s Z. Clearly, S is generated over R by two elements, the uniform dimen-

sion of R is one, and if m = pxp2 • • • pk for distinct primes p¡, then the uniform

dimension of S is k + 1.

For S a prime Goldie ring one can obtain reasonable inequalities bounding the

uniform dimension of S. These bounds will be consequences of our subsequent

results.

In view of Example 1, our next theorem gives the best possible converse to

Theorem 2. We wish to thank J. C. Robson for indicating how our proof for the

prime case extended to the semiprime case.
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Theorem 3. If R is a semiprime right Goldie ring and S is a prime ring, then S is a

right Goldie ring and «-dim S < rj(u-dim R),for S = 2"_! s¡R.

Proof. Let Rx, . . ., R, be the distinct minimal annihilator ideals of R. If R is a

prime ring, then for consistency of notation, set Rx = R. For each R¡ choose

{v¡j} c {sx,. .. ,sn} maximal with respect to being right R¡ independent, so

F¡ = "ZjVjjRi is a free right R¡ module. The maximality of {v^} means that for

sk E {Vjj}, Rj n skxF¡ = Aik j= 0. For each such sk it is clear from the relation

spR = Rsp that Aik is an ideal of R, so the primeness of R¡ yields that A¡ = (~) * Aik

is a nonzero ideal of R. Should {u^} = [sx, . . ., sn}, set A¡ = R¡. From the

definition of A¡, SA¡ = "2,SjA¡ c F,. Since Äf./?y. = 0 for i =¿=j, and since each F¡ is a

torsion free R¡ module, F = F, + • • • + F, is a direct sum of R modules and is a

torsion free Rx © • • • ®R, module. In fact, F is a torsion free R module because if

c E R is regular and fc = 0 for / G F, then fed — 0 for d regular in Rx

© • • • ©/?,, and the regularity of cd E Rx © • • • ®R, forces / = 0. Also, note

that if A = Ax © • • • ©/!„ then SA c F.

As each A¡ is a nonzero ideal of R¡, A contains a regular element of R. Therefore

S/ F is a torsion /? module, so it follows that if Q is the semisimple Artinian right

quotient ring of R, F ®Ä Q st S <8>R Q = M is a finitely generated right Q module

in which F embeds as F ® 1. Letting S act on M by left multiplication gives a ring

homomorphism of S into Endß(M). For any y E S, y ¥= 0, we have y SA ^ 0

because S is a prime ring. But ySA c SA c F, which is a torsion free R module.

Therefore y M = y S ®R Q D y SA <8>Ä Q ¥= 0, and 5 is isomorphic to a subring of

Endß(Af ). As a finitely generated (2 module, M is a finite direct sum of irreducible

Q modules, so Endß(Af) is a semisimple Artinian ring. It follows that S satisfies

the ascending chain condition on right annihilators.

Let 2 7]r be a direct sum of right ideals of S. For each /, T¡SA is a nonzero right

R submodule of F, and 2,¡T¡SA is direct. Now F is a finite direct sum of R

submodules of the form SjRk, with SjRk at Rk as Rk modules. The uniform dimen-

sion of Rk is the same when considered as either an R module or as an Rk module.

Thus u-dim(SjRk)R = «-dim Rk, so F has finite uniform dimension, as an R

module, and in fact,

u-dim FR < «2 «-dim R¡ = «(«-dim R).
i

Consequently (7)} contains at most n(u-dim R) elements, so S is a right Goldie

ring.

In the situation of Theorem 3, or more generally when R and S are both

semiprime right Goldie rings, it is natural to ask about the relation between the

classical quotient rings of R and of S. Our final theorem shows that Q(R) does

embed in Q(S), although the embedding may not be unit to unit.

Theorem 4. If R and S are both semiprime right Goldie rings, then (i) Q(R)

embeds in 0(5), (ii) M-dim R < «-dim S, and (iii) if regular elements of R are

regular in S then the embedding of Q(R) in Q(S) extends the natural embedding of R

in Q(S).
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Proof. Let T = {q G Q(S)\qc = 0 for c a regular element of R}, where we

consider R c S c Q(S). It is easy to see that T is a Q(S) — R sub-bimodule of

Q(S) and that M = Q(S)/T is (right) Ä torsion free. Note also that since T is a

left ideal of Q(S), it is finitely generated, so Td = 0 for some d regular in R.

Suppose that Mr = 0 for some r G R. Then Q(S)r c T, so Ö(SW = 0, and r = 0

follows from the regularity of d in R. Therefore, R embeds in E = EndG(S)(A/) via

right multiplication on Af. Furthermore, since M is R torsion free and £ is a

semisimple Artinian ring, regular elements of R are invertible in E, so Q(R)

embeds in E. Conclusion (i) follows from the fact that M is isomorphic to a direct

summand of Q(S). The observation that w-dim R = u-dim Q(R) is the cardinality

of a set of primitive orthogonal idempotents proves (ii). Finally, if regular elements

of R are regular in 5, then T = 0, E = Q(S), and (iii) is immediate.

We do not know under what general conditions the embedding of Q(R) in Q(S)

will be unit to unit. It may be that this will hold whenever S is a prime Goldie ring,

since in this case it may be that regular elements of R are regular in S. The

following example based on a construction of G. Bergman, shows that in the

semiprime case the embedding need not be unit to unit and that Q(S) need not be

generated as a module over the image of Q(R).

Example 3. Let A be a commutative domain with 1, and g a homomorphism of

A onto itself so that Ker(g) ^ 0. For example, take A = F[xx, x2, . . . ] with g

generated by a downward shift of the indeterminates. Let x G Ker(g) — {0} and

set

S =
A

(x)

A

A

For

R =
A

(x)

A

A

let R be the copy of R in S under the isomorphism sending

a

xc
to (U j\H

Then S is a normalizing extension of R generated by ls and (0, 1^). Clearly,

Q(R) s M2(K) for K the ring of fractions of A, and Q(S) - M2(K) © K. Note

that any embedding of Q(R) in Q(S) must send Q(R) to (M2(K), 0), since

otherwise the projection onto the second coordinate of Q(S) would give an

isomorphism of M2(K) onto K.

Using the inequality in Theorem 3 gives the following corollary of Theorem 4:

Corollary. If R is a semiprime right Goldie ring and S is a prime ring, then

«-dim R < u-dim S < n(u-dim R),for S = 2"_, s¡R.

We note that the lower bound in the corollary can be achieved by taking

S = M,(F), for F a field, and R = Fexx + • • • + Fe„, where {e¡j} are the usual

matrix units. Also, the upper bound can be attained, as the following example

shows.
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Example 4. Given n > 2, let F be a field containing a primitive nth root of unity,

say w. Let S be the subring of Mn(F[x]) consisting of those matrices whose entries

below the main diagonal belong to xF[x]. Clearly, S is a prime Goldie ring with

«-dim S = n. If {e/y} are the usual matrix units in Mn(F[x]), let T = ex2 + e23

+ • • • +en_Xn + xenX, and Y = wexx + w2e22 + • • • +w"em. It follows that R,

the F subalgebra of S generated by /„ and T, is isomorphic to F[x], that

wYT = TY, and that S = R + RY + ■ ■ ■ +RYnX is a normalizing extension of

R with «-dim S = «(«-dim R).

Added in Proof. The question about regular elements in R being regular in S

has been shown to be false by an example of L. Small. Using the notation of

Example 3, let R be the image of A in S = M2(A) given by sending an A to the

diagonal matrix, diag(a, g(a)). Then S is a prime ring and a finite normalizing

extension of R, but diag(x, 0) is not regular in S.
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