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ON THE INTEGRABILJTY OF THE MAXIMAL ERGODIC

FUNCTION

NGHIÊM ©ÄNG-NGOC

Abstract. Let G - R¿ or Zd and consider an ergodic measure-preserving action of

G on a probability space (X, 8, P), let / e L\X, P) and Mf be its maximal

ergodic function. Our purpose is to prove the converse of the following theorem of

N. Wiener: if |/| log+1/| is integrable then Mf is integrable. For the particular case

G = Z this result was already obtained by D. Ornstein whose proof is based on

induced transformations and seems to be specific to Z, our proof is based on a

result of E. M. Stein on the Hardy- Littlewood maximal function on R* and its

analogue on Zd.

Introduction. Our main result is the "only if' part of the following theorem (see

the notations below).

Theorem. Let G = Rd or Zd with d > 1. Consider an ergodic measure-preserving

action of G on a probability space (X, 21, P), and let f be a positive integrable function

on (X, 91, P). The maximal function Mf is integrable if and only if f log+/ is

integrable.

The "if' part of the theorem is classical and was proved by N. Wiener (cf.

[8], [2]), the "only if' part was proved for the particular case G = Z by D. Ornstein

(cf. [6], [5D, with a proof based on induced transformations. Our proof is quite

different and is based on a result of E. M. Stein (cf. [7]) on the Hardy-Littlewood

maximal function. Similar results on certain classes of martingales were proved by

D. L. Burkholder (cf. [ID and R. F. Gundy (cf. [4]).
Let G = Rd or if with d > 1, let (X, 31, P) be a probability space. We assume

that G acts measurably by measure-preserving transformations on (A", SI, P): we

denote this action by G X A* 3 (g, x) -» gx G X and write rgx = gx.

Let p be the Lebesgue measure on G, if V is a measurable subset of G, we write

|K| = p(V), and p(dg) = dg. If G = Rd, we denote by Vr the ball of radius r

centered at 0. If / is a measurable function on R**, we define the Hardy-Littlewood

maximal function Mf of /by

Mfig) = sup  T^T   f   \fig + h)\dh.
r>0   \Vr\   JVr

Now if / G L\X, % P), then the function G B g ~»/x(g) = /(gx) is w-integra-

ble on compact subsets of G for almost every x. We define
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Mfx(g) = sup i^T f   \fx(g + h)\ dh.
r>0    \V,\   'V,

We write also Mfigx) = Mfx(g), xGX,gGRd.

We denote by log+|/| the positive part of log|/|: log+|/| = max(log|/|, 0).

When G = Zd we note Vn = {-n, -n + 1,..., n)d for n > 1, we define simi-

larly Mf for/ G L^Z') and Mfx(g), xGX,gGZd for/ E ¿'(JIT, 21, P).

The function A//(x) is called the maximal ergodic function of /. We recall the

following result of E. M. Stein:

Lemma 1 (cf. [7, p. 306]). Letf G Lx(Rd), then for \>0,we have

\{gG Rd\M\f\(g) > X}\ > -i- / |/(g)| dg,
c3 A   J{\f\>c\)

where c is a constant depending only on the dimension d.

Next, we prove the Calderón-Zygmund lemma (cf. [3, p. 91]) and Lemma 1 for

Z":

We call quasi-cube of Zd any subset of Zd of the form Ix X . . . X Id where I, is

an interval of Z, i = 1, . . ., d, satisfying

sup   | |7,.| - \Ij\ | < 1.
KiJ<d

The number sup|7,| is called the length of the quasi-cube. Any quasi-cube 1 < i < d

with length > 3 can be divided into 2d disjoint quasi-cubes (we divide each I¡ into

two intervals 7/ and I2 with | \I2\ — |7/| | < 1 and form the new quasi-cubes as the

products of these intervals) and any quasi-cube with length 2 is the disjoint union

of at most 2d one-point cubes.

Lemma 2. Let Q be a quasi-cube, X > 0, f a positive function on Q such that

There exist disjoint quasi-cubes Qx, . . . , Qn of Q such that if q £ U fc_ i Qk we

havefiq) < X and X < \Qk\~x^qSQltAl) < 3dX, k = 1, . .., n.

Proof. Let Px, .. ., Pn be a partition of Q into disjoint quasi-cubes as above

(with nx < 2").

For each Pj,j < nx we have two alternatives: Either

(a) iPjl'^gepKq) < X; we have two possibilities:

if \Pj\ > 1 we continue to subdivide PJt if \Pj\ = 1, P} = {q} we have fiq) < X; or

(ß) \Pj\~^qePjfiq) > X; in this case we do have \Pj\~^q&Pjfiq) < 3dX since

lß|A>   2 Áq)>   2  /(?)   and   \Pj\>£j:
qeQ qGPj 3

We keep then Pj as one of the Qk's.

An iteration of these arguments proves the lemma.

We deduce from this lemma the following version of the Calderón-Zygmund

lemma (cf. [3, p. 91D for Zd.
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Lemma 3. Let fbe a positive integrable function on Zd, X > 0. There exist disjoint

quasi-cubes Qx, . . ., Qn such that if g E Uj[Li Qkwe have fig) < X and

*<17T7    2   Ag)<*K      k = l,...,n.
\\¿k\   geQj,

Proof. Let g be a cube of Zd such that

fig) < X,    Hg€Q   and   —   2  /(?) < K
\\£\    qeQ

we can then apply the above lemma to Q.

As a consequence, we obtain a version of Lemma 1 of E. M Stein for Zd.

Lemma 4. Let f be a positive integrable function on Zd, let

(A//)(g) = sup ~■ f fig + h)dh,
;7o \vn\ K,

where V„ = {-n, . . . , n}d. For every X > 0 we have

\{Mf>\}\>-¡~ f fig)dg
3 eX J{f>c\)

where c is a constant depending only on the dimension d (and is not equal to that of

Lemma 1).

Proof. We follow the proof of E. M. Stein:

By Lemma 3, there exist disjoint quasi-cubes Qx,..., Q„ of Zd such that

fig) <X   iig$Ql\j...uQH,

X<T7TT í  A¿)dg<3d\,       k=l,...,n.
Mk\   JQk

It follows that if g E Qx u . • • U Qn we have Af/(g) > X/c, where c = 3d. We

deduce that {g G Zd\Mf(g) > X/c} D U^., Qk and therefore

(gGZ"|A//(g)>M  >  2 12*1
( c )       k-\

>-Jr/M       f(g)dg>^-f       fig)dg.
3"X JtJk<KQk 3d\ J{f>\)

The lemma follows if we replace X by cX.

Lemma 5. Assume that the action of G on (X, 91, P) is ergodic.

Let f be a positive integrable function on (X, P). Then for every X > ||/||,, we have

the inequality

P(x E X\Mfix) > X) > -L   f fix) dP(x). (1)
X6"c J{f>c\}

Proof, (a) By the pointwise ergodic theorem (cf. [8]) we have

T¿7 /  figx)dg ->   E(f)   F-a.e.
KhI   JV„ n^"*>
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Let X > E(f), e > 0, using Egorov's theorem, we can find a measurable subset

Xt c X, P(Xt) > 1 — e and an integer n such that

^ ¡vfigx)dg<X,       V*E*e. (2)

Let A = {(g, x) G (VH - Vn) x X\Mfx(g) > X), where Vn - Vn - {g - ¿\g G

vH,g'evH),

Ag = An({g)XX) = {xG X\Mfx(g) > X),       Vg E V„ - Vn,

A0={xG X\M)\x) > X},

Ax = An(Gx {x)) = {gG(Vn- Vn)\Mfx(g) > X}.

By the measure-preserving property, we have

P(Ag) = P(r-^o) = P(A0),       VgeF,- V„. (3)

Therefore by the Fubini theorem, we obtain

/        P(Ag)dg = (p<8>P)(A),
Jrm- v,

\(Vn- V„)\P(A0) = (p®P)(A),

\(Vn-Vn)\P(A0)=f \Ax\dP(x). (4)
Jx

(b) Now let//-(g) = lK(g)firgx), (g, x) E G X X, and let

Av- - {(g, x) E G X *|A///-(g) > X},

A* = Av*n(GX {x}),

^/-={gEG|M//.(g)>X}.

We remark that

MfA g) > ¥ff< g),       xGX,gG G. (5)

(c) Let x G Xe, we shall show that

4T" c ¿x, (6)
or equivalently

{ g E G|A//r"(g) > X} c { g E (Vn - VH)\Mfx(g) > X}. (7)

As Mfx(g) > A///"(g), V(g, x) E G x X, it suffices to show that

{gEG|M/jr.(g)>X}c(K„-Kn),

but this relation follows from (2) and the remark that if g E ( VH — Vn), we have

= 0 if s < n,

<-±- f fi[hx)dh    i!s>n.

(d)Let

tl =   sup     [ fix) dP(x),      b > 0.

P(E)<e
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As/is integrable, we have

rje-»0,   whene->0. (8)

(e) Consider the relation (3):

|( V„ - V„)\P(A0) = /      14,1 dP(x) + f \AX\ dP(x).
Jx\x, Jx,

Combining with the relation (6), we have

\(Vn-Vn)\P(A0)>f\Axr.\dP(x),
Jx.

\(Vn - Vn)\P(A0) > f  dP(x)(-L-  [ //-(g) dg)
Jxt \\3dc J{geG\f!'-(S)>c\} f

(by Lemma 1 for G = Rd and Lemma 4 for G ■ Zd).

\(Vn-Vn)\P(A0)>-±r f dP(x)f fxv<g)dg
\3dC   JX J{geG\fr(g)>c\}

-^T  f dP^St y fx"(g)dg.
\3dc Jxsx, •/{?ec|/r.(g)>cx}

(9)

(f)But

/      dP(x)f fxV"(g)dg<[      dP(x)[ figx)dg
Jx\x. J{geG\f?-(g)>c\} Jx\x. Jvm

<(   dgf      figx)dP(x)
Jvn    Jx\xt

<f  dgf lT-,(X-Xe)(x)fix)dP(x).

f      dP(x)f fxK(g)dg<\K\\ OO)
JX\X. J{geG\f?-(g)>c\}

(since FÍt-'íA- \ A,)) = F(A" \ A.) < e).

(g) Consider now

( dP(x)[ fRg)dg
Jx J{geG\f?'(g)>c\}

= /   */  l{xex\\ym(gWgx)>c\)Ägx) dP(x),
'n X

if g G Vn, we have

/ i{xex\iyit(g)Agx)>c\)Ägx) dP(x) = 0,

if g G V„, we have

J   l{x<=x\iym(gMgx)>c\)Ägx) dP(x) = j l[xex\j(gx)>c\}jXgx) dP(x)

= / fix)dP(x).
J(f>c\)
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Therefore

J dP(x)( fRg)dg = \VH\¡ fix)dP(x).        (11)
Jx J{gec\fï-(g)>c\} J{f>c\}

(h) Combining (9), (10) and (11) we have

I Vn - VH\P(A0) > 1^ / Äx) dP(x) - 1^ n, (12)
X3ac J{f<c\) X3"c

As \V„\ < |(F„ - K„)| < 2^|K„|, 4, = {x G A-|3f/(x) > X} and lim^ r,t = 0, we
finally obtain

P(x E X\Mf(x) > X) > -¿-  f fix) dP(x).
X6c J{f>c\]

The lemma is proved.

Proof of the theorem. The theorem follows from the lemma by the following

well-known argument:

[ Mfix) dP(x) = f °° P(Mf > X) d\
Jx Jo

= j       F(M/ > X) d\ + f     P(Mf > X) d\
Jo J\\f\\,

>Ci + f   ¿- Í Ax)dP(x)d\
Jüftí.   fr\r   Jif^*\\

5c •'x       •'i

'll/lli 6"Xc J{f>c\)

-max(/(x)/c,l) J^

oc •'x

We have proved the theorem.

Remarks, (a) In the theorem, the hypothesis of the ergodicity of the system is

important. It is easy to see that the conclusion of the theorem is true if and only if

the system has a finite number of ergodic components: if the system possesses an

infinite number of disjoint measurable invariant subsets we can easily construct an

invariant positive integrable / such that / log"*"/ is not integrable, but for such a

function we have Mf = /.

(b) The proof of the theorem is not modified if we replace Vn by {0, 1,.. .,

n - l}d in the case of Zd and Vr by [0, rf in the case of R*.
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