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ON THE INTEGRABILITY OF THE MAXIMAL ERGODIC
FUNCTION

NGHIEM DANG-NGOC

ABSTRACT. Let G = R? or Z¢ and consider an ergodic measure-preserving action of
G on a probability space (X, %, P), let f € L'(X, P) and Mf be its maximal
ergodic function. Our purpose is to prove the converse of the following theorem of
N. Wiener: if | f] log*| f] is integrable then Mf is integrable. For the particular case
G = Z this result was already obtained by D. Ornstein whose proof is based on
induced transformations and seems to be specific to Z, our proof is based on a
result of E. M. Stein on the Hardy-Littlewood maximal function on R? and its
analogue on Z°.

Introduction. Our main result is the “only if” part of the following theorem (see
the notations below).

THEOREM. Let G = R? or Z° with d > 1. Consider an ergodic measure-preserving
action of G on a probability space (X, A, P), and let f be a positive integrable function
on (X, ¥, P). The maximal function Mf is integrable if and only if f log*f is
integrable.

The “if” part of the theorem is classical and was proved by N. Wiener (cf.
[8], [2]), the “only if” part was proved for the particular case G = Z by D. Ornstein
(cf. [6], [S]), with a proof based on induced transformations. Our proof is quite
different and is based on a result of E. M. Stein (cf. [7]) on the Hardy-Littlewood
maximal function. Similar results on certain classes of martingales were proved by
D. L. Burkholder (cf. [1]) and R. F. Gundy (cf. [4]).

Let G = R? or Z¢ with d > 1, let (X, %, P) be a probability space. We assume
that G acts measurably by measure-preserving transformations on (X, %, P): we
denote this action by G X X D (g, x) » gx € X and write 7,.x = gx.

Let p be the Lebesgue measure on G, if V is a measurable subset of G, we write
|V| = w(V), and p(dg) = dg. If G = R? we denote by V, the ball of radius r
centered at 0. If f is a measurable function on R?, we define the Hardy- Littlewood
maximal function Mf of f by

1
M; = Sup 7 + h)| dh.
f(g) = sop 77 [, 1A +

Now if f € L'(X, 9, P), then the function G 3 g — f,(g) = f(gx) is p-integra-
ble on compact subsets of G for almost every x. We define
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Mf(g) = sup |V|f |8 + B)| dh.

We write also Mf(gx) = Mj;(g), x€E X,g ER%

We denote by log™* | f| the positive part of log| f|: log*|f| = max(log| f], 0).

When G = Z° we note V, = {-n, -n + 1,...,n)? for n > 1, we define simi-
larly Mf for f € L'(Z*) and Mf(g), x € X, g € Z%for f € L\(X, %, P).

The function Mf(x) is called the maximal ergodic function of f. We recall the
following result of E. M. Stein:

LemMA 1 (cf. [7, p. 306]). Let f € L'(R?), then for A > 0, we have

d
(s € RMIfI(8) > M} > — f( oy (BN

where c is a constant depending only on the dimension d.

Next, we prove the Calderon-Zygmund lemma (cf. [3, p. 91]) and Lemma 1 for
z°

We call quasi-cube of Z? any subset of Z¢ of the form I, X ... X I, where I, is
anintervalof Z,i = 1, . . ., d, satisfying

sup I 4l =15 | < 1.
1<ij<

The number sup| ;| is called the length of the quasi-cube. Any quasi-cube 1 <i < d
with length > 3 can be divided into 2¢ disjoint quasi-cubes (we divide each I, into
two intervals I and I? with | |I2| — |I| | < 1 and form the new quasi-cubes as the
products of these intervals) and any quasi-cube with length 2 is the disjoint union
of at most 2¢ one-point cubes.

LEMMA 2. Let Q be a quasi-cube A > 0, f a positive function on Q such that

o7 2 S0 <x

There exist disjoint quasi-cubes Q,, ..., Q, of Q such that if g & U ., O we
have f(g@) K Aand A < |Qy| 'S o (D <IN k=1,...,n

PROOF. Let P,, ..., P, be a partition of Q into disjoint quasi-cubes as above
(with n, < 2°).

For each P;, j < n, we have two alternatives: Either

(@) [P 'Zep f(9) < A; we have two possibilities:

if | ;| > 1 we continue to subdivide P;, if | P}| = 1, P, = {q} we have f(q) < A; or

(8 |P|"qu,rf(q) > A; in this case we do have |B|~'2,ep @) < 3N since

oh> 3 0> 3 o) wd 17> 1.
q9EF
We keep then P; as one of the Q’s.
An iteration of these arguments proves the lemma.
We deduce from this lemma the following version of the Calder6n-Zygmund
lemma (cf. [3, p. 91)) for Z°.
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LeEMMA 3. Let f be a positive integrable function on Z°, \ > 0. There exist disjoint

quasi-cubes Ql,...,Q,l such that if g & U;., O, we have f(g) < A and
|Q| > A <3\, k=1...,n
kl gEQ

PROOF. Let Q be a cube of Z7 such that
f(g) <A ifge&Q and |Q| E.f(q)<A

9€Q
we can then apply the above lemma to Q.
As a consequence, we obtain a version of Lemma 1 of E. M. Stein for Z%.

LEMMA 4. Let f be a positive integrable function on Z°, let
1
M =sup —— + h) dh,
(MI)(g) = sup 7 f, fg+h)
where V,, = {-n, . .., n}. For every A > 0 we have

1
Mf > A > —
7 >N > o [ e e
where c is a constant depending only on the dimension d (and is not equal to that of
Lemma 1).

Proor. We follow the proof of E. M. Stein:
By Lemma 3, there exist disjoint quasi-cubes Q,, . . . , Q, of Z¢ such that

f(g)<>‘ ifgeQ]U...UQn,
|leff(g)dgw'x k=1,...,n.

It follows that if g € Q, U ... UQ, we have Mf(g) > A/c, where ¢ = 3%. We
deduce that {g € Z|Mf(g) > A/c} D Uj., O and therefore

(im0 >2)|> 3 1o

1
Py Ukaf(g)dg 3,,}\ f f()

The lemma follows if we replace A by cA.

LEMMA 5. Assume that the action of G on (X, U, P) is ergodic.
Let f be a positive integrable function on (X, P). Then for every A > || f||,, we have
the inequality

1
P(x € X|Mf(x) > X) > = f( f(x) dP(x). (1)

PROOF. (2) By the pointwise ergodic theorem (cf. [8]) we have

]71’7 fo(gx) dg - E(f) P-ae.
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Let A > E(f), € > 0, using Egorov’s theorem, we can find a measurable subset
X, C X, P(X,) > 1 — e and an integer n such that

ﬁ fv. fgx)dg <A, Vxe€X, )
Let 4 = {(g,x) €E(V, = V,) X X|Mf(g) > A}, where V, -V, = (g —¢g|g E
Vg €V,
A, =An ({8} X X) = (x EX|Mf(g) >N}, VgEV, -V,
Ay = {x € X|Mf(x) > A},
A, =An (G Xx{x})={g eV, V)IM(g)>A}.
By the measure-preserving property, we have
P(4,) = P(1,'4,) = P(4,), VgEV,-V, (3)
Therefore by the Fubini theorem, we obtain
J,_, P(4)) dg = (n ® P)4),

|V = V)| P(4o) = (u @ P)(4),

(V. = Vo)l P(4) = [ 14| dP(x). @
() Now let £/(g) = 1, (&)f(7,x), (& x) € G X X, and let
A" ={(g, x) € G x X|Mf"(g) > A},
Al=4%n (G x {x}),
A}~ = {g € G|Mf}(g) > A}.

We remark that
Mf(g) > Mf{(g), x€EX,g€G. O
(c) Let x € X, we shall show that
A C A, ©)
or equivalently
{2 € GIMf(8) > A} c {g €(V, - V,)IMf.(2) >A}. @]

As Mf.(g8) > Mf’(g),V(g, x) € G X X, it suffices to show that
{8 € GIMf(g) >N} c(V, — V)
but this relation follows from (2) and the remark that if g & (V, — V,), we have
1 =0 if s <n,
™I f,,,fxy'("*g)‘”' <|7'| [ fyan its>n.
al 77,

(d) Let

o= sup [ fx)dP(x), e>0.
Eec¥% E
P(E)<e
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As f is integrable, we have
1,—0, whene—0. 8)
(e) Consider the relation (3):

(V. = VIP(Ao) = [ 14,1 dP(x) + [ |4,] dP(x).
X\X, X,
Combining with the relation (6), we have
(V. = V)IP(Ae) > [ 14| dP(x),

1
vV, -V, A3
(V. = V)IP(4,) > L dp (x)( A3% j;geolf,"(:)x’\}

(by Lemma 1 for G = R? and Lemma 4 for G = Z%).
1
(¥, = VIP(AQ) > 5o [ dPCo) f fs) dg

8EG|f(8)>cA}

£4®) dg)

1 .
A3 -[x\x, dp(")f{geal L,,(g)m}fx'(g) dg. (9

(f) But

Vn
J,. 4@ f{geawﬂw}f, () dg < [ aP() [ fgx)dg

e

<[, dof fex)ap(x)
< [, 48[ 10X = X)(x) dP().

v,
S O, ey (8 8 < Vil (10)

(since P(1, (X \ X)) = P(X \ X,) <ee).
(g) Consider now

dP ¥ 8) dj
fx (x) f{ ,eouxvn(g)m}f (8) dg

=fy dgj;’ l{xEX|ly.(g)J(pt)>cA)j(gx) dP(x),
if g & V,, we have "

fx Lixexin, (e >} f(8%) dP(x) = 0,
if g € V,, we have

j:" Lixexn, (oen>a) f(8x) dP(x) = f; Lxexifgy > A 8x) dP(x)

= A(x) dP(x).

{f>cA}
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Therefore
[ apt) [ A dg=1Vl[  fxyapx). (1)
X {2E€EGIf(g)>cA}) {f>eA)
(h) Combining (9), (10) and (11) we have
|Val |Val
x) dP(x) — . 12
e f{ ey T 4P = 3320 (12)

As |V,| < |(V, = V)| < 2|V,|, Ay = {x € X|Mf(x) > A} and lim, 4 3, = 0, we
finally obtain

[V = Vil P(4) >

1
P(x € X|Mf(x) >N) > f{ oy f(x) dP(x).

The lemma is proved.
PROOF OF THE THEOREM. The theorem follows from the lemma by the following
well-known argument:

[ Mix) ap(x) = [ ® P(Mf > \) dA
X 0 .
- f“’"' P(Mf >N a\+ [~ P(Mf > N) dA
0 1Al

1
I 6%Ac >

1 max(f(x)/¢c,1) 1
>cz+6‘,cij(x)f1 3 @A

>C + A(x) dP(x) d\

>C,+ 6—‘1,6 fX f(x) log*f(x) dP(x).

We have proved the theorem.

REMARKS. (a) In the theorem, the hypothesis of the ergodicity of the system is
important. It is easy to see that the conclusion of the theorem is true if and only if
the system has a finite number of ergodic components: if the system possesses an
infinite number of disjoint measurable invariant subsets we can easily construct an
invariant positive integrable f such that f log*f is not integrable, but for such a
function we have Mf = f.

(b) The proof of the theorem is not modified if we replace ¥, by {0, 1,.. .,
n — 1}? in the case of Z¢ and V, by [0, r}¥ in the case of R%.
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